

Inverter User Manual

EDS1000: 0.4-55kW

Shenzhen Gozuk Co., Limited

Motor control \& drives manufacturer
Website: www.gozuk.com

Foreword

Our inverters are designed and produced according to EN61800-5-1: 2007, EN61010-1:2010; EN61800-3: 2004+A1:2012 standards under ISO9001:2008 quality management system.

1. EDS1000 series can fulfill all kinds of demand for general-purpose inverter by advanced control manner which make high torque, high precision and wide-range speed regulation drive be available. EDS1000 is organic combine of customer's general need and industrial requirement to provide practical PI adjuster, simple PLC, programmable input output terminal control, long-distance synchronous control, impulse frequency provision and other special inverter control with powerful function for customer and to provide highly-integrated incorporative solution of high value for reducing system cost and improving system reliability for device manufacturing and automatization engineering customers.

EDS 1000 's big torque low noise and low electromagnetic disturbance during operation can fulfill customer's environmental protection requirement by space voltage vector PWM control technique, speed sensorless vector control technology and electromagnetic compatibility unitary design.
2. EDS1100 series inverter specialized for drawing machine is a kind of inverter in cable industry for winding and rewinding control. Its internal real-time computing module can automatically identify the coil diameter of the receive volume, the wire diameter of drawing wire , according to the changes of winding and rewinding of the roll diameter, automatically adjust the output frequency of winding and rewinding of the inverter, to keep constant tension of winding and rewinding cable.
Drawing machine can divide into large drawing machine, medium drawing machine, slender drawing machine and micro drawing machine other four, composes of drawing and taking-up two parts. To improve the quality of cable and lower the cost, drawing machine is general from single frequency control to dual-frequency control, and now most of the dual-frequency control is generally used external PID control board, the shortcomings of this approach are: the control parameters of PID board is difficult to debug, the control performance depends on the level of debugging skill; Too many components and adjustable potentiometers on the PID board are more prone to damage, repair and maintenance costs are high.

EDS1100 series inverters specialized in drawing machine adopt a unique control method, independently form dual-frequency digital PID control system, automatically identify the diameter of reel roll, the mechanical transmission ratio,
cable diameter, automatically adjust the PID parameters, track the speed of the host, that is to pole zero of the tension balance when it powers on (middle point), is a real sense of the fool-type inverter special for drawing machine. As long as the correct general electrical wiring, you can work. Whether it is an empty plate, half plate, full plate, or the low speed, medium speed, high speed, which ensures a smooth start, smooth operation, constant tension when wire drawing machine at work, as well as achieving start, stop at any time. Complete replacement of external PID board to make the system more compact, cheaper, easier to maintain, while controlling effect is more stable.

In order to maintain constant tension of the close and put, the inverter special for drawing machine is to be in a relatively short period of time acceleration and deceleration. During the process of acceleration and deceleration, the inverter must provide larger start-up current, braking current and resulted in higher DC bus voltage, thus it needs external braking resistor.
Appendix 1 only makes instructions of controlling function of the inverter special for drawing machine, please use with EDS1000 manual simultaneously when operating.

Assembling wiring, parameter setting, troubleshooting and daily maintenance notices are available in this manual. To make sure that you can correctly assemble and operate EDS1000 series inverters to exert their excellent performance, please read this user manual detailed before you assemble the device and conserve the manual appropriately before the end-user get them.
Please contact our office or dealer in all places at any moment if you have any doubts or special demands when using these inverters, and you can also contact our after service center in our Headquarters directly. We will serve you with all our heart.

We reserve our right to notice you if we change contents of this manual.

CONTENTS

1 Safety information and use notice points 1
1.1 Safety precautions 1
1.2 Use range 2
1.3 Use notice points 2
1.4 Scrap notice points 3
2 Type and specification of the inverter 4
2.1 Incoming inverter inspect 4
2.2 Type explanation 4
2.3 Series type explanation 5
2.4 Appearance and parts name explanation 6
2.5 Outer size and gross weight 6
2.6 Outer size of key board and its fixing box 8
2.7 Product technic index and spec 8
3 Installation and wiring 11
3.1 Installation ambient 11
3.1.1 Demand for installation ambient 11
3.1.2 Installation direction and space. 11
3.2 Parts disassembly and installation 12
3.2.1 Key board disassembly and installation. 12
3.2.2 Plastic/metal cover disassembly and installation 12
3.3 Wiring notice points 13
3.4 Main loop terminal wiring 14
3.4.1 Connection between inverter and fitting parts 14
3.4.2 Main loop terminal wiring. 16
3.5 Basic running wiring diagram 18
3.6 Control loop collocation and wiring 19
3.6.1 Location\&function of terminal and slide switch 19
3.6.2 Explanation for control panel terminal 20
3.6.3 Analog input output terminal wiring 23
3.6.4 Communication terminal wiring 25
3.7 Installation guide for anti-jamming 27
3.7.1 Restraining to noise disturbance 27
3.7.2 Locale wiring and earthing 29
3.7.3 Relation of long-distance wiring and current leak and the countermeasure 29
3.7.4 Installation demand for electromagnetic on-off electronic device 29
4 Run and operation explanation for inverter 31
4.1 Run of inverter 31
4.1.1 Running order channels 31
4.1.2 Frequency-provision channel 31
4.1.3 Work state 31
4.1.4 Run mode 32
4.2 Operation and use of key board 34
4.2.1 Keypad layout 34
4.2.2 Keypad function description 34
4.2.3 LED and indicator light 35
4.2.4 Key board display status 35
4.2.5 Method for operating keypad 37
4.3 Inverter electrification 41
4.3.1 Check before electrification 41
4.3.2 First electrification 41
5 Function parameter schedule graph 42
5.1 Symbol description 42
5.2 Function parameter schedule graph 42
6 Detailed function description 57
6.1 Basic run function parameter group: F0 57
6.2 Start, stop, braking function parameter group:F1 62
6.3 Auxiliary run function parameter group: F2 64
6.4 Closed-loop run function parameter group: F3 73
6.5 Simple PLC function parameter group:F4 80
6.6 Terminal correlative function parameter group: F5 84
6.7 Traverse special function parameter group: F6 97
6.8 Frequency provision function parameter group: F7 99
6.9 Motor and vector control parameter group: F8 101
6.10 Protection function parameter group:F9 103
6.11 Failure record function parameter group: Fd 106
6.12 Password and manufacturer function parameter group: FF 107
6.13 Stop assistant function parameter group: FA 108
7 Troubleshooting 109
7.1 Failure and countermeasure 109
7.2 Failure record lookup 111
7.3 Failure reset 112
8 Maintenance 113
8.1 Routine maintenance 113
8.2 Inspection and replacement of damageable parts 113
8.3 Repair guarantee 114
8.4 Storage 114
9 Fitting parts 115
9.1 Communication subassembly 115
9.1.1 Long-distance operation key board 115
9.1.2 Communication cable 115
10 Examples 116
10.1 Common speed regulation running 116
10.2 Terminal control running 117
10.3 Multi-step speed control running 118
10.4 Closed-loop control system 119
10.5 Consecutive action running 120
10.6 Application to constant pressure water supply 121
11 Serial port RS485 communication protocol 127
Appendix1 EDS1100 drawing machine inverter manual 136
Appendix2 The manual of EDS1300 middle frequency inverter 155
Appendix 3 Modus communication protocol(need customized special process) 169
Appendix4 Braking resistance 177

1 Safety information and use notice points

In order to ensure the safety of your personal and equipment, before using the inverter, please read this chapter of contents conscientiously.

1.1 Safety precautions

There are three kinds of safe relevant warnings in this service manual, they are as follows:

A
This symbol explains items that need to be paid attention to when being operated.

This symbol is briefed on some useful information.

This symbol briefs on: If does not operate on request, may cause death, severely injured or serious property loss.

Forbid user directly power off when the inverter is under running, accelerating or decelerating, must only ensure that the drive has been completely shut down or in standby situation can perform power off operation. Otherwise, the users themselves afford the damage of the inverter, equipment damage and personal accident.
(1) Forbid to connect U, V, W output end to AC power supply, otherwise cause the complete damage of the inverter.
(2) Don't make P - and $\mathrm{P}+$ short-circuited, otherwise cause the inverter to be damaged.
(3) The inverter is forbidden to install on the flammables, otherwise have danger of fire.
(4) Don't install it in the environment with explosive gas, otherwise have danger of causing explosion.
(5) After connecting main loop, should carry on insulating treatment to bare wiring end, otherwise have danger of getting an electric shock.
(6) If being connected to the power supply, don't operate the inverter with moist hands, otherwise have danger of getting an electric shock.
(7) The ground terminal of the inverter must be grounded well.
(8) Inverter being connected to power supply, please don't open cover and carry on wiring, can connect the wire or check only after closing power for 10 minutes.
(9) Only qualified personnel may carry on wiring and forbid leaving over any conductive thing in machine, otherwise have danger of getting an electric shock or causing damage of the inverter.
(10) Inverter stored for over 2 years, should be stepped up gradually with voltage regulator first while having the electricity, otherwise have danger of getting electric shock and explosion.
(1) It is prohibited that connect AC 220 V signal to control ends except $\mathrm{TA}, \mathrm{TB}, \mathrm{TC}$, otherwise have danger of damaging property.

A
(2) If the inverter is damaged or without all parts, please don't install and operate it, otherwise have danger of fire or cause personnel to be injured.
(3) When installing, should choose a place where can endure the inverter, otherwise have danger of injuring personnel or damaging property while falling down.

1.2 Use range

(1) This inverter is only suitable for three phases AC asynchronous motor in general industrial field.
(2) While applying inverter to such equipments that relate much to the life, great property, safety devices etc., must handle cautiously, and consult with producer, please.
(3) This inverter belongs to the control device of general industrial motor, if used in dangerous equipment, must consider the security safeguard procedures when the inverter breaks down.

1.3 Use notice points

(1) EDS1000 series inverter is voltage-type inverter, so temperature, noise and vibration slightly increasing compared to power source running when using, belongs to normal phenomenon.
(2) If need to run for a long time with constant torque of low-speed, must select motor of frequency conversion for use. Use general asynchronous AC motor when running at a low speed, should control temperature of the motor or carry on heat dissipation measure forcedly, so as not to burn the generator.
(3) Such mechanical device needing lubricating as the gearbox and gear wheel, etc., after running at a low speed for a long time, may be damaged as lubrication result become poor, please take necessary measure in advance.
(4) When the motor running with frequency above specified, besides considering the vibration, noise increase of the motor, must also confirm speed range of the motor bearing and the mechanical device.
(5) For hoist and great inertia load, etc., the inverter would shut off frequently due to over-current or over-voltage failure, in order to guarantee normal work, should consider choosing proper brake package.
(6) Should switch on/off the inverter through terminal or other normal order channels. It is prohibited that switch on/off the inverter frequently by using strong electric switch such as magnetic control conductor, otherwise will cause the equipment to be damaged.
(7) If need to install such switch as the magnetic control conductor, etc. between
inverter output and the motor, please guarantee the inverter is switched on/off without output, otherwise may damage the inverter.
(8) The inverter may meet with mechanical resonance of the load within certain range of frequency output, can set up jumping frequency to evade.
(9) Before using, should confirm the voltage of the power is within the working voltage range allowed, otherwise should vary voltage or order special inverter.
(10) In the condition of altitude above 1000 meters, should use the inverter in lower volume, reduce output current by 10% of specified current after each 1500 meters height increasing.
(11) Should make insulation check to the motor before using it for the first time or after a long time placement. Please inspect with 500 V voltage-type megohm meter according to method shown as graph 1-1 and insulation resistance should not be smaller than $5 \mathrm{M} \Omega$, otherwise inverter may be damaged.
(12) To forbid assembling capacitor for improving power factor or lightningproof voltage-sensible resistance etc., otherwise will cause malfunction trip of the inverter or damage of the parts, shown as graph 1-2.

Fig.1-1 motor insulation measure Fig.1-2 capacitor at output side forbidden

1.4 Scrap notice points

When disposing scrap inverter and its parts, please note:
(1) The unit: please discard as industrial useless.
(2) Electrolytic capacitor: when burning the inverter electrolytic capacitor in it may explode.
(3) Plastic: when plastic, rubber parts etc. in the inverter are burning, they may bring bad, poisonous gas, so please be ready to safeguards.

2 Type and specification of the inverter

2.1 Incoming inverter inspect

(1) Check if there is damage during transportation and inverter itself has damage or fall-off parts.
(2) Check if parts presented in packing list are all ready.
(3) Please confirm rated data of the inverter is in line with your order requirement.

Our product is guaranteed by strict quality system during manufacturing, packing, transportation etc., please contact our company or local agent rapidly if some careless omission or mistake arise, we'll deal with it as soon as possible.

2.2 Type explanation

EDS1000-4 T 0022 G / B

Fig. 2-1 type description

If the inverter hasn't relevant content or can be defaulted, code after "/" will be ignored.

2.3 Series type explanation

Table 2-1 series type explanation

Inverter type (G: general with constant torque: P: special for blower water pump)	Input voltage (V)	Rated power (KVA)	Rated output current (A)	Adapted motor (KW)
EDS1000/1300-2S0004	Single phase $\begin{gathered} 220 \mathrm{~V} \\ \pm 15 \% \end{gathered}$	1.1	3	0.4
EDS1000/1300-2S0007		1.8	4.7	0.75
EDS1000/1300-2S0015		2.8	7.5	1.5
EDS1000/1300-2S0022		3.8	10	2.2
EDS1000-2S0037		5.6	17	3.7
EDS $1000 / 1100 / 1300-4 \mathrm{~T} 0007 \mathrm{G} / 0015 \mathrm{P}$	Three phase $\begin{gathered} 380 \mathrm{~V} \\ \pm 15 \% \end{gathered}$	1.5/2.4	2.3/3.7	0.75/1.5
EDS $1000 / 1100 / 1300-4 \mathrm{~T} 0015 \mathrm{G} / 0022 \mathrm{P}$		2.4/3.3	3.7/5	1.5/2.2
EDS $1000 / 1100 / 1300-4 \mathrm{~T} 0022 \mathrm{G} / 0037 \mathrm{P}$		3.3/5.6	5/8.5	2.2/3.7
EDS $1000 / 1100 / 1300-4 \mathrm{~T} 0037 \mathrm{G} / 0055 \mathrm{P}$		5.6/8.6	8.5/13	3.7/5.5
EDS $1000 / 1100 / 1300-4 \mathrm{~T} 0055 \mathrm{G} / 0075 \mathrm{P}$		8.6/11	13/17	5.5/7.5
EDS1000/1100/1300-4T0075G/0110P		11/17	17/25	7.5/11
EDS1000/1100/1300-4T0110G/0150P		17/21.7	25/33	11/15
EDS1000/1100/1300-4T0150G/0185P		21.7/25.7	33/39	15/18.5
EDS 1000/1100/1300-4T0185G/0220P		25.7/29.6	39/45	18.5/22
EDS $1000 / 1100 / 1300-4 \mathrm{~T} 0220 \mathrm{G} / 0300 \mathrm{P}$		29.6/39.5	45/60	22/30
EDS $1000 / 1100 / 1300-4 \mathrm{~T} 0300 \mathrm{G} / 0370 \mathrm{P}$		39.5/49.4	60/75	30/37
EDS $1000 / 1100 / 1300-4 \mathrm{~T} 0370 \mathrm{G} / 0450 \mathrm{P}$		49.4/60	75/91	37/45
EDS $1000-4 \mathrm{~T} 0450 \mathrm{G} / 0550 \mathrm{P}$		60/73.7	91/112	45/55
EDS $1000-4 \mathrm{~T} 0550 \mathrm{G} / 0750 \mathrm{P}$		73.7/99	112/150	55/75
EDS1000-7T0110G/0150P	Three phase 690 V $\pm 15 \%$	17/21.7	15/18	11/15
EDS $1000-7 \mathrm{~T} 0150 \mathrm{G} / 0185 \mathrm{P}$		21.7/25.7	18/22	15/18.5
EDS $1000-7 \mathrm{~T} 0185 \mathrm{G} / 0220 \mathrm{P}$		25.7/29.6	22/28	18.5/22
EDS $1000-7 \mathrm{~T} 0220 \mathrm{G} / 0300 \mathrm{P}$		29.6/39.5	28/35	22/30
EDS $1000-7 \mathrm{~T} 0300 \mathrm{G} / 0370 \mathrm{P}$		39.5/49.4	35/45	30/37
EDS $1000-7 \mathrm{~T} 0370 \mathrm{G} / 0450 \mathrm{P}$		49.4/60	45/52	37/45
EDS $1000-7 \mathrm{~T} 0450 \mathrm{G} / 0550 \mathrm{P}$		60/73.7	52/63	45/55
EDS $1000-7 \mathrm{~T} 0550 \mathrm{G} / 0750 \mathrm{P}$		73.7/99	63/86	55/75
EDS 1000-7T0750G/0900P		99/116	86/98	75/90
EDS $1000-7 \mathrm{~T} 0900 \mathrm{G} / 1100 \mathrm{P}$		116/138	98/121	90/110
EDS $1000-7 \mathrm{~T} 1100 \mathrm{G} / 1320 \mathrm{P}$		138/167	121/150	110/132
EDS $1000-7 \mathrm{~T} 1320 \mathrm{G} / 1600 \mathrm{P}$		167/200	150/175	132/160
EDS $1000-7 \mathrm{~T} 1600 \mathrm{G} / 2000 \mathrm{P}$		200/250	175/215	160/200
EDS $1000-7 \mathrm{~T} 2000 \mathrm{G} / 2200 \mathrm{P}$		250/280	215/235	200/220

2.4 Appearance and parts name explanation

Fig. 2-3 Parts name sketch

2.5 Outer size and gross weight

Fig.a

Fig.

Fig.b

Fig.d

Fig.

Fig.f

Fig.2-4 Outer dimension

Table 2-2 EDS1000-2S0004~EDS1000-4T0750P mounting size

Inverter type (G: general; P: special)		$\begin{gathered} \mathrm{A} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { B } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { W } \\ (\mathrm{mm}) \end{gathered}$	$\underset{(\mathrm{mm})}{\mathrm{H}}$	$\begin{gathered} \mathrm{D} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { D1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Fixing } \\ \text { apertu } \\ \text { re } \\ (\mathrm{mm}) \end{array}$	$\begin{array}{\|c} \hline \text { G.W. } \\ (\mathrm{kg}) \\ \hline \end{array}$	Fig.
EDS 1000/1300-2S0004	EDS1000/1300-2S0007	110	160	125	170	123.2	135.5	4	2	Fig a
EDS $1000 / 1300-2 \mathrm{~S} 0015$	EDS1000/1300-2S0022									
EDS1000/EDS $1100 / 1300-4 \mathrm{~T} 0007 \mathrm{G} / 0015 \mathrm{P}$										
EDS1000/EDS1100/1300-4T0015G/0022P										
EDS $1000 / 1100 / 1300-4 \mathrm{~T} 0022 \mathrm{G} / 0037 \mathrm{P}$										
EDS $1000-2 \mathrm{~S} 0037$		140	215	155	230	155	164	5	3.8	Fig b
EDS $1000 / 1100 / 130$	4T0037G/0055P									
EDS $1000 / 1100 / 1$	-4T0055G/0075P									
EDS $1000 / 1100 / 1$	-4T0075G/0110P	185	275	200	290	178	187	6	63	
EDS1000/1100/1	-4T0110G/0150P	185	275	200	290	178	187	6	6.3	Fig b
EDS1000/1100/130	-4T0150G/0185P	135	330	218	345	210	221	7	10	Fig c
EDS $1000 / 1100 / 130$	4T0185G/0220P	180	410	260	430	252	261	9	17	Fig c
EDS1000/1100/130	-4T0220G/0300P									
EDS $1000 / 1100 / 130$	4T0300G/0370P	200	485	280	505	252	261	9		
EDS1000/1100/1	4T0370G/0450P	200	485	280	505	252	261	9	23	Fig c
EDS $1000-4$	50G/0550P	200	515	300	535	252	261	9	33	Fig c
EDS $1000-4$	50G/0750P	250	620	370	645	258	267	12	52	Fig c

Table 2-2 EDS1000-7T0110G~EDS1000-7T1320G mounting size

Inverter type	$\begin{gathered} \mathrm{A} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{B} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{W} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{H} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{D} \\ (\mathrm{~mm}) \end{gathered}$	Fixing aperture (mm)	Fig.
EDS1000-7T0110G/0150P	200	552	284	570	252.7	9	Fige
EDS1000-7T0150G/0185P							
EDS1000-7T0185G/0220P	280	620	420	650	300	9	Fig d
EDS1000-7T0220G/0300P							
EDS1000-7T0300G/0370P							
EDS1000-7T0370G/0450P							
EDS1000-7T0450G/0550P	320	720	500	750	300	12	Fig d
EDS1000-7T0550G/0750P							
EDS1000-7T0750G/0900P	400	790	590	820	372	12	Fig d
EDS1000-7T0900G/1100P							
EDS1000-7T1100G/1320P							
EDS1000-7T1320G/1600P							
EDS $1000-7 \mathrm{~T} 1600 \mathrm{G} / 2000 \mathrm{P}$	-	-	630	1200	500	-	Fig f
EDS $1000-7 \mathrm{~T} 2000 \mathrm{G} / 2200 \mathrm{P}$							

2.6 Outer size of keypad and its fixing box (unit: mm)

Fig.2-5 EN-KB5 outer size

Fig.2-7 EN-KB6 outer size

Fig. 2-5 EN-KB5 hole size

Fig.2-8 EN-KB6 hole size

2.7 Product technic index and spec

Item		Item description
Input	Rating volt., frequency	3 phase 690 V grade, 3 phase $690 \mathrm{~V}, 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$; 3 phase 380 V grade, 3 phase $380 \mathrm{~V}, 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$; 1 phase 220 V grade, 1 phase $220 \mathrm{~V}, 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$
	Allowed work volt. range	3 phase 690 V grade: $586 \mathrm{~V} \sim 760 \mathrm{~V}$; 3 phase 380 V grade: $320 \mathrm{~V} \sim 460 \mathrm{~V}$; 1 phase 220 V grade: $200 \mathrm{~V} \sim 260 \mathrm{~V}$
output	Voltage	690 V grade: $0 \sim 690 \mathrm{~V}$; 380 V grade: $0 \sim 380 \mathrm{~V}$; 220 V grade: $0 \sim 220 \mathrm{~V}$
	Frequency	$0 \mathrm{~Hz}-400 \mathrm{~Hz}$

	Over loading capacity		G type: 150% of rating current for1 minute, 200% of rating current for 0.5 second; P type: 120% of rating current for 1 minute;
Control performance	Control mode		Speed sensorless slip vector control, open loop V/F control
	Speed regulation range		1:100
	Start-up torque		150\% of rating torque at 1 Hz frequency
	Running speed stable state precision		$\leqslant \pm 0.5 \%$ of rating synchronous speed
	Frequency precision		Digital setting: max. frequency $\times \pm 0.01 \%$; analog setting: max.frequency $\times \pm 0.5 \%$
	Frequency resolution	Analog setting	0.1\% of max. frequency
		Digital setting	precision : $<100 \mathrm{~Hz} \quad 0.01 \mathrm{~Hz} ; \geqslant 100 \mathrm{~Hz}: 0.1 \mathrm{~Hz}$
		Exterior impulse	0.5% of max. frequency
	Torque boost		Automatic torque boost, manual torque boost $0.1 \% \sim 12.0 \%$
	V/F curve (volt. frequency characteristic)		Set rating frequency randomly at range of $5 \sim 400 \mathrm{~Hz}$, can choose constant torque, degressive torque 1 , degressive torque 2 , degressive torque 3 and user-defined V/F in total 5 kinds of curve
	Accelerating decelerating curve		2 modes: straight line accelerating decelerating and S curve accelerating decelerating; 7 kinds of accelerating decelerating time (unit minute/second can be optioned), max. time 6000 minutes.
	brake	Power consumption brake	Interior or exterior brake resistance. 690 V grade haven't build-in brake unit.
		DC brake	Optional start-up and stop, action frequency $0 \sim 15 \mathrm{~Hz}$, action volt. $0 \sim 15 \%$, action time $0 \sim 20.0 \mathrm{~s}$
	Jog		Jog frequency range: $0.50 \mathrm{~Hz} \sim 50.00 \mathrm{~Hz}$; jog accelerating decelerating time $0.1 \sim 60.0 \mathrm{~s}$ can be set
	Multisection speed running		Realized by interior PLC or control terminal
	Interior PID controller		Be convenient to make closed-loop system
	Automatic energy save running		Optimize V/F curve automatically based on the load to realize power save running
	Automatic volt. regulation (AVR)		Can keep constant output volt. When power source voltage varies.
	Automatic current limiting		Limit running current automatically to avoid frequent over-current which will cause trip
Running function	Running order specified channel		Key pad specified, control terminal specified, serial port specified.
	Running frequency specified channel		Digital provision, analog provision, impulse provision, serial port provision, combined provision, can be switched at any time by kinds of method.

	pulse output channel	Impulse square wave signal output of $0 \sim 20 \mathrm{KHz}$, can realize output of physical parameter such as setting frequency, output frequency etc.
	Analog output channel	2 channel of analog signal output, thereinto AO1 channel can be $4 \sim 20 \mathrm{~mA}$ or $0 \sim 10 \mathrm{~V}$ and AO 2 channel is $0 \sim 10 \mathrm{~V}$; through them the inverter can realize output of physical parameter such as setting frequency, output frequency etc.
keypad	LED display	Can display setting frequency, output frequency, output voltage, output current etc.
	Lock the button	Lock all or part of the buttons(analog potentiometer can't be locked)
Protection function		Over-current protection, over-voltage protection, lack-voltage protection, over-heat protection, over-load protection, etc.
Fitting parts		brake subassembly, remote-control keypad, connecting cable for remote-control keypad etc.
ambient	Use ambient	indoor, not bare to sunlight, no dust, no corrosive gas, no flammable gas, no oil fog, no vapor, no water drop or salt etc.
	altitude	Lower than 1000 m , if higher than 1000 m , need to reduce amount to use.
	Ambient temperature	$-10^{\circ} \mathrm{C} \sim+40^{\circ} \mathrm{C}$ (under ambient temperature $40^{\circ} \mathrm{C}$ $\sim 50^{\circ} \mathrm{C}$, please reduce the volume or strengthen heat sink)
	Ambient humidity	Smaller than $95 \% \mathrm{RH}$, no condensation water
	vibration	Smaller than $5.9 \mathrm{~m} / \mathrm{s}^{2}(0.6 \mathrm{~g})$
	Storage temperature	$-40^{\circ} \mathrm{C} \sim+70^{\circ} \mathrm{C}$
configuration	Defending grade	IP20
	Cooling mode	By fan with automatic temperature control
Mounting mode		Wall hanging

To exert excellent performance of this inverter, please choose correct type and check relevant content according to this chapter before wiring for use.

Must choose correct type, otherwise may cause abnormal running of the motor or damage of the inverter.

3 Installation and wiring

3.1 Installation ambient

3.1.1 Demand for installation ambient

(1) Installed in drafty indoor place, ambient temperature within $-10^{\circ} \mathrm{C} \sim 40^{\circ} \mathrm{C}$, need external compulsory heat sink or reduce the volume if temperature exceeds $40^{\circ} \mathrm{C}$.
(2) Avoid installing in place with direct sunlight, much dust, floating fibre and metal powder.
(3) Forbid to install in place with corrosive, explosible gas.
(4) Humidity should be smaller than 95% RH, without condensation water.
(5) Installed in place of plane fixing vibration smaller than $5.9 \mathrm{~m} / \mathrm{s}^{2}(0.6 \mathrm{~g})$.
(6) Keep away from electromagnetic disturbance source and other electronic apparatus sensible to electromagnetic disturbance.

3.1.2 Installation direction and space

(1) Normally the inverter should be mounted vertically, horizontal mounting will seriously affect heat dissipation and the inverter must be used in lower volume.
(2) Demand for minimum mounting space and distance, please see Fig.3-1.
(3) When install multiple inverters up and down, must apply leading divider between them, see fig. 3-2.

Fig. 3-1 mounting space

Fig. 3-2 mounting of multiple inverters

3.2 Parts disassembly and installation

3.2.1 Key board disassembly and installation
(1) Disassembly

Let the forefinger press finger inlet on the keypad, depress fixing flexible plate on the top lightly, draw it outward, then you can disassemble the keypad.
(2) Assembly

Fig.3-3 mounting sketch of keypad
First place the fixing hook at the bottom of keypad onto mounting claw on keypad mounting hole, let forefinger press fixing flexible plate on top of keypad and then push it inside, release it in proper location(after a crisp sound), see Fig. 3-3.

3.2.2 Plastic/metal cover disassembly and installation

3.2.2.1 Plastic cover disassembly and installation:

(1) Disassembly

Put the finger into handle hole on the bottom of cover, lift it in force, till buckle between cover and unit body off, draw the cover backward, then you can disassemble the cover.
(2) Assembly
$1>$ tilt the cover for 5~10 degree;
$2>$ put the mounting claw into relevant hole on the unit body and then press downward in force, see fig. 3-4.

3.2.2.2 Metal cover disassembly and installation

(1) Disassembly

First take off 2 screws at sides of the cover and move it a bit outward horizontally, then tilt it at 15 degree and draw it outward at direction shown in right figure, now you can take the cover off.
(2) Assembly

First put down the cover in parallel with unit body and make it just locked at 2 sides of the inverter, secondly force it ahead and make fixing part on its top inserted into fixing slot of unit body, at last screw the cover and finish assembly for the cover. As shown in Fig.3-5.

Fig. 3-4 disassembly and mounting sketch of plastic cover

Fig.3-5 disassembly and assembly for metal cover

3.3 Wiring notice points

(1) Assure power cuf off completely for above 10 minutes before wiring, otherwise have danger of getting electric shock.
(2) Forbid connecting power wire to output U, V, W of the inverter.
(3) There is current leakage in the inverter and leak current of middle/high power inverter is bigger than 5 mA , for safety reason, inverter and motor must be earthed safely, commonly use $3.5 \mathrm{~mm}^{2}$ above copper wire as ground wire and ground resistance smaller than 10Ω.
(4) Before shipment compression resistance test of the inverter is passed, so user should not conduct compression resistance test again.
(5) Should not assemble electromagnetic contactor and absorbing capacitance or other absorbing device, see fig. 3-5.
(6) To be convenient to over current protect of input side and power off maintenance inverter should be connected to power supply through relay.
(7) Connecting wire for relay input and output loop(X1~X8, OC1~OC4, FWD, REV), should use above $0.75 \mathrm{~mm}^{2}$ glued wire or shielding wire, one shielding layer end hung in the air, the other connected to grounding end PE or E, connecting wire shorter than 20 m .
(1) Before wiring, assure power supply is cut off completely for 10 minutes and all LED indicator light extinguished.
(2) Before internal wiring, confirm that DC volt. Between main loop end $\mathrm{P}+$ and $\mathrm{P}-$ fall down to below DC36V.
(3) Wiring can only be done by professional person trained and qualified.
(4) Before electrification, check if voltage grade of the inverter is in line with that of power supply volt., otherwise will cause personnel injured and device damaged.

Fig.3-6 banned magnetic control conductor and absorbing capacitance between inverter and motor

3.4 Main loop terminal wiring

Fig.3-7 main loop simple wiring

3.4.1 Connection between inverter and fitting parts

(1) Must assemble disjunction device such as isolation switch etc. between power source and the inverter to assure personal safety when repairing the inverter and needing compulsory power off.
(2) Power supply loop must have breaker or fuse with over current protection function to avoid malfunction expanding caused by failure of after device.
(3) AC input reactor If high-order harmonics between inverter and power supply is biggish which can't fulfil system requirement, or need to improve input side power factor, AC input reactor is needed.
(4) Magnetic control conductor only be applied to power supply control and don't apply magnetic control conductor to controlling on/off of the inverter.
(5) Input side EMI filter Can use EMI filter to inhibit high-frequency conduction disturbance and emission disturbance from inverter power supply wire.
(6) Output side EMI filter Can use EMI filter to inhibit emission disturbance noise and wire leakage current from output side.
(7) AC output reactor

Advise assembling AC output reactor to avoid motor insulation damage, too large over current and inverter frequent protection when connecting wire from inverter to motor exceeds 50 m . But voltage drop of AC output reactor must be considered. Improve input output voltage of the inverter or let the motor in lower volume to avoid burning off the motor.
(8) Complete ground wire

Inverter and motor must be earthed and grounding resistor smaller than 10Ω.Grounding wire should be

Fig.3-8 connection of inverter and fitting parts shorter enough and wire diameter be bigger enough(not smaller than following standard): 7.5 KW or below motor: $3.5 \mathrm{~mm}^{2}$ above copper wire; $11 \sim 15 \mathrm{KW}$ motor: $8 \mathrm{~mm}^{2}$ above copper wire. $18.5 \sim 37 \mathrm{KW}$ motor $14 \mathrm{~mm}^{2}$ above copper wire; $45 \sim$ 55 KW motor: $22 \mathrm{~mm}^{2}$ above copper wire.

3.4.2 Main loop terminal wiring

For main loop input output terminal, see table 3-1.
Table 3-1 main loop input output terminal description

Adapted type	Main loop terminal	End name	Function description
EDS $1000-2 \mathrm{~S} 0004$ \sim EDS $1000-2 \mathrm{~S} 0022$	$\frac{\mathrm{L} 1}{\mathrm{~L} 2} \underset{\mathrm{P}+\mathrm{PB}}{\mathrm{U}} \xlongequal[\mathrm{~V}]{\mathrm{W}} \underset{\mathrm{PE}}{\mathrm{~S}}$	$\begin{aligned} & \hline \text { L1 } \\ & \text { L2 } \\ & \mathrm{P}+ \\ & \mathrm{PB} \\ & \\ & \mathrm{U}, \mathrm{~V}, \mathrm{~W} \\ & \mathrm{PE} \end{aligned}$	Zero wire Live wire DC volt. positive end Reserved end for external braking resistance 3 phase AC output end Grounding terminal
EDS1000-2S0037	$\mathrm{L} 2 \mathrm{P}+\mathrm{PB} \mathrm{P}-\mathrm{PE} \mathrm{U} \mathrm{V} \mathrm{W}$	$\begin{aligned} & \hline \mathrm{L} 1 \\ & \mathrm{~L} 2 \\ & \mathrm{P}+ \\ & \mathrm{PB} \\ & \\ & \mathrm{P}- \\ & \mathrm{PE} \\ & \mathrm{U}, \mathrm{~V}, \mathrm{~W} \\ & \hline \end{aligned}$	Zero wire Live wire DC volt. positive end Reserved end for external braking resistance DC volt. negative end Grounding terminal 3 phase AC output end
$\begin{gathered} \text { EDS } 1000-4 \mathrm{~T} 0007 \mathrm{G} \\ \sim \\ \text { EDS } 1000-4 \mathrm{~T} 0022 \mathrm{G} \end{gathered}$		R, S, T P+ PB U, V, W PE	3 phase AC 380 V input terminal DC volt. positive end Reserved end for external braking resistance 3 phase AC output end Grounding terminal
$\begin{gathered} \text { EDS } 1000-4 \mathrm{~T} 0037 \mathrm{G} \\ \sim \\ \text { EDS } 1000-4 \mathrm{~T} 0110 \mathrm{P} \end{gathered}$	$\begin{aligned} & \text { R } \mathrm{S} \text { T P+PB P- E U } \mathrm{V} \text { W } \end{aligned}$	$\begin{aligned} & \mathrm{R}, \mathrm{~S}, \mathrm{~T} \\ & \mathrm{P}+ \\ & \mathrm{P}- \\ & \mathrm{PB} \\ & \mathrm{E} \\ & \mathrm{U}, \mathrm{~V}, \mathrm{~W} \\ & \hline \end{aligned}$	3 phase AC 380 V input terminal DC volt. positive end DC volt. negative end Reserved end for external braking resistance Grounding terminal 3 phase AC output end
$\begin{aligned} & \text { EDS } 1000-4 \mathrm{~T} 0110 \mathrm{G} / \mathrm{B}- \\ & \text { EDS } 1000-4 \mathrm{~T} 0150 \mathrm{G} / \mathrm{B} \\ & \text { EDS } 1000-4 \mathrm{~T} 0150 \mathrm{P} / \mathrm{B} \sim \\ & \text { EDS } 1000-4 \mathrm{~T} 0185 \mathrm{P} / \mathrm{B} \end{aligned}$		$\mathrm{R}, \mathrm{S}, \mathrm{T}$ P $\mathrm{P}+$ $\mathrm{P}-$ PB $\mathrm{U}, \mathrm{V}, \mathrm{W}$ E	3 phase AC 380 V input terminal DC volt. positive end P, P+ can connect DC reactor DC volt. negative end DC braking resistance can be connected between P and PB 3 phase AC output terminal Shield grounding terminal

$\begin{aligned} & \text { EDS } 1000-4 \mathrm{~T} 0185 \mathrm{G} \sim \\ & \text { EDS1000-4T0550G } \\ & \text { EDS1000-4T0220P~ } \\ & \text { EDS1000-4T0750P } \end{aligned}$		$\begin{aligned} & \mathrm{R}, \mathrm{~S}, \mathrm{~T} \\ & \mathrm{P} \\ & \mathrm{P}+ \\ & \mathrm{P}- \\ & \mathrm{U}, \mathrm{~V}, \mathrm{~W} \\ & \mathrm{E} \end{aligned}$	3 phase AC 380 V input terminal DC volt. positive end Reserved terminal for exterior DC reactor DC volt. negative end 3 phase AC output terminal Shield grounding terminal
EDS $1000-7 \mathrm{~T} 0185 \mathrm{G} \sim$ EDS1000-7T1320G EDS1000-7T0220P~ \sim EDS1000-7T1600P		$\begin{aligned} & \mathrm{P}+ \\ & \mathrm{P} \\ & \mathrm{P}- \\ & \mathrm{R}, \mathrm{~S}, \mathrm{~T} \\ & \mathrm{U}, \mathrm{~V}, \mathrm{~W} \\ & \mathrm{PE} \end{aligned}$	Reserved terminal for exterior DC reactor DC volt. positive end DC volt. negative end 3 phase AC 690 V input terminal 3 phase AC output terminal Shield grounding terminal

(1) Can connect braking unit between $\mathrm{P}+$ and P - externally if necessary.
(2) Can connect DC braking resistor between PB and $\mathrm{P}+$ externally if necessary.
(3) DC reactor can be connected between P and $P+$ if necessary.
(4) P and $\mathrm{P}+$ must be short-circuited before shipment, otherwise the inverter can't work.

3.5 Basic running wiring diagram

Adapted type: EDS1000-2S0004~2S0037 EDS1000-4T0007~4T0015G
EDS1000-4T0022G~EDS1000-4T0750P

Fig. 3-9 basic wiring diagram

3.6 Control loop collocation and wiring

3.6.1 Location\&function of terminal and slide switch:

For location of terminal and slide switch on the CPU board, please see Fig.3-10.

Function description of terminal provided for the user, please see Table 3-2, function and setup description of slide switch, please see Table 3-3, terminal CN1, CN3 and are for manufacturer's use. Should carry on terminal wiring correctly and set all slide switch on the CPU board before using the inverter, to use $1 \mathrm{~mm}^{2}$ above conducting wire as terminal connecting wire is recommended.

Fig. 3-10 slide switch on CPU board
Table 3-2 function description of terminal provided for user

symbol	function	Description
RS485 JP15	RS485, JP15 communication port	lonnection port for remote-control keypad , upper machine control or cascade and synchronous control
JP1	Malfunction relay signal output	Always-open connect pin of the relay closed when malfunction in inverter occurs
CN2	External terminal input output control	Use this port when external terminal control inverter running

Table 3-3 function description of slide switch provided for user

Symbol	Function	Setting	Factory default
JP7	YCI: $5 \mathrm{~V} / 10 \mathrm{~V}$ voltage input mode selection	and $: 0 \sim 5 \mathrm{~V}$ voltage signal;	$0 \sim 10 \mathrm{~V}$ voltage signal

3.6.2 Explanation for control CPU board

(1) control loop terminal CN2 arranged as follows for inverter below 1.5 kw :

(2) control loop terminal CN2 arranged as follows for inverter above 2.2 kw :

(3) CN2 terminal function description as Table 3-4.

Table 3-4 CPU board CN2 terminal function table

item	symbol	name	Function description	Spec
	FWD	Forward run command	Forward reverse run command, see F5.08 group double-wire and three-wire control function description	Optocoupler isolation input Input impedance: $\mathrm{R}=2 \mathrm{~K} \Omega$ Max. input frequency: 200 Hz
	REV	Reverse run command		
	X1	Multi-function input 1	Used for multi-function input terminal, for detailed see Chapter 6 Section 6.6 terminal function parameter(F5 group)input end function description.	
	X2	Multi-function input 2		
	X3	Multi-function input 3		

	X4	Multi-function input 4	X7, X8 can be set as H-speed impulse input port, for detailed see Chapter 6 Section 6.6 terminal function parameter(F5 group)input end function description. (common end: COM)	Input impedance of X7, X8 input channel: $\mathrm{R}=2 \mathrm{~K} \Omega$ Max. output Freq.: 20 KHz Input voltage range: $15 \sim 24 \mathrm{~V}$
	X5	Multi-function input 5		
	X6	Multi-function input 6		
	X7	Multi-function input 7		
	X8	Multi-function input 8		
$$	$+24 \mathrm{~V}$	+24 V power supply	$\begin{aligned} & \text { Provide }+24 \mathrm{~V} \text { power } \\ & \text { supply. } \\ & \text { (negative pole: } \mathrm{COM} \text {) } \end{aligned}$	$\begin{aligned} & \text { Max. output current: } \\ & 150 \mathrm{~mA} \end{aligned}$
	$+10 \mathrm{~V}$	$\begin{aligned} & +10 \mathrm{~V} /+5 \mathrm{~V} \text { power } \\ & \text { supply } \end{aligned}$	Provide $+10 \mathrm{~V} /+5 \mathrm{~V}$ power supply. (negative pole: GND)	Max. output current: 50 mA
	COM	Common end +24 V power supply negative pole	Common end and reference ground of digital signal input	Internal isolating between COM and
	GND	+10 V power supply negative pole	Reference ground of analog signal and +10 V power supply	
	CCI	Analog value input CCI	Accept analog voltage/current input, voltage, current optioned by slide switch JP9, factory default is current. (reference ground: GND)	Input voltage range: $0 \sim 10 \mathrm{~V}$ (input impedance: $70 \mathrm{~K} \Omega$) Input current range: $4 \sim 20 \mathrm{~mA}$ (input impedance: 250Ω) Resolution: $1 / 1000$
	YCI	Analog value input YCI	Accept analog voltage input, $0 \sim 5 \mathrm{~V}$ or $0 \sim 10 \mathrm{~V}$ optioned by slide switch JP7, factory default is $0 \sim 5 \mathrm{~V}$. Can control running direction of the motor directly. (reference ground: GND)	Input voltage range: $0 \sim 5 \mathrm{~V}$ (input impedance $70 \mathrm{~K} \Omega$), $0 \sim 10 \mathrm{~V}$ (input impedance $36 \mathrm{~K} \Omega$) Resolution: 1/1000
	VCI	Analog value input VCI	Accept analog voltage input, $0 \sim 5 \mathrm{~V}$ or $0 \sim 10 \mathrm{~V}$ optioned by slide switch JP8, factory default is $0 \sim 10 \mathrm{~V}$. (reference ground: GND) Pren	Input voltage range: $0 \sim 10 \mathrm{~V}$ (input impedance: $70 \mathrm{~K} \Omega$) resolution: $1 / 1000$
	AO1	Analog value output1	Provide analog voltage/current output, can express 6 kinds of parameter see F5.17 parameter description, output voltage/current optioned by slide switch JP6, factory default output voltage. (reference ground: GND)	Current output range: $4 \sim 20 \mathrm{~mA}$ voltage output range: $0 \sim 10 \mathrm{~V}$
	AO2	Analog value output 2	Provide analog voltage output (reference ground: GND)	

	OC1	Open circuit collector output terminal 1	Used for multi-function switch output terminal, for detailed see Chapter 6 Section 6.6 terminal function parameter (F5 group) output end function description. (common end: COM)	optocoupler isolation output Work voltage range: 15~30V Max. output current: 50 mA Use method see Description of parameter F5.10~F5.13
	OC2	Open circuit collector output terminal 2		
	OC3	Open circuit collector output terminal 3		
	OC4	Open circuit collector output terminal 4		
	DO	H-speed impulse output terminal	Used for multi-function impulse signal output terminal, for detailed see Chapter 6 Section 6.6 terminal function parameter(F5 group) output end function description. (common end: COM)	Output impulse voltage: 24 V Output frequency range: depending on parameter F5.24, max. 20 KHz

(4) Terminal RS485, arranged as follows(planform of RS485 terminal):

RS485 terninal arrangement										
No.	1	2	3	4	5	6	7	8		
name	$485+$	$*$	$485-$	$*$	$*$	GND	$*$	+5 V		

"*" terminal is for the manufacturer, user can't use.
(5) RS485 terminal and JP15 function description as table 3-5

Table 3-5 CPU board RS485 terminal function table

item	symbol	name	Function description	spec
communication	RS485+	RS485communicationinterface	485 difference signal positive end	For standard RS-485 communication interface please use twisted-pair or STP
	RS485-		485 difference signal negative end	
	JP15		485 connector	

You can choose crystal plug or connector for communication cable.
(6) Control terminal JP1, arranged as follows:

(7) JP1 terminal function description as Table 3-6.

Table 3-6 CPU board JP1 terminal function

Item	symbol	name	Function description	Spec
Relay output terminal	TA	Inverter malfunction output relay	Normal: TB-TC closed, TA-TC open Malfunction: TB-TC open, TA-TC closed	TB-TC: always-closed,TA-TC: always-openContact capacity:AC250V/2A $\quad(\operatorname{COS} \Phi=1)$AC250V/1A $\quad(\operatorname{COS} \Phi=0.4)$DC30V/1A
	TB			
	TC			

3.6.3 Analog input output terminal wiring
(1) VCI terminal accepts analog voltage signal input, wiring as follow:

(2) CCI terminal accepts analog signal input, slide switch decide to input voltage $(0 \sim 10 \mathrm{~V})$ or input current $(4 \sim 20 \mathrm{~mA})$, wiring mode as follows:

CCIcurrent input

$4 \sim 20 \mathrm{~mA}$
CCI volt. input

Fig.3-12 CCI terminal wiring diagram
(3) YCI terminal accepts analog voltage signal input, wiring mode as follows:

YCI current input

$0 \sim 5 \mathrm{~V}$
YCI volt.

Fig.3-13 YCI terminal wiring diagram
$0 \sim 10 \mathrm{~V}$
Explanation: relation between YCI input voltage and set frequency is as following figure:
$1>$ when YCI input voltage is $0 \sim 10 \mathrm{~V}$:

$2>$ when YCI input voltage is $0 \sim 5 \mathrm{~V}$:

(4) wiring of analog output terminals $\mathrm{AO} 1, \mathrm{AO} 2$

Analog output terminals $\mathrm{AO} 1, \mathrm{AO} 2$ connected to analog meter and kinds of physical data can be indicated, thereinto AO1 can output current ($4 \sim 20 \mathrm{~mA}$) or voltage $(0 \sim 10 \mathrm{~V})$ decided by slide switch JP6. Terminal wiring mode as Fig.3-13.

Analog current output

$4 \sim 20 \mathrm{~mA}$
Fig.3-14 analog output terminal wiring
(1) When inputing anglog signal, can connect filter capacitor or common module inductance between VCI and GND or between CCI and GND or between YCI and GND.
(2) Analog input, output signal is easy to be disturbed, so must use shielded cable when wiring and well grounded, wiring length should be as short as possible.

3.6.4 Communication terminal wiring

EDS1000 inverter provides RS485 serial communication interface for the user.
Following wiring methods make single-main single-sub control system or single-main multi-sub control system possible. Using upper machine(PC or PLC controller)software can realize real time supervision to inverter in the industrial control system so that realize complicated run control such as long-distance control, high automatization etc; you can also take one inverter as mainframe and the others as submachine to form cascade or synchronous control network.
(1) When inverter RS485 interface connected to other devices with RS485 interface, you can connect wire as below figure.

Fig.3-15 Communication terminal wiring
(2) To connect remote control keypad, you can connect plug of remote control keypad to RS485 directly. No need to set any parameter, inverter local keypad and remote control keypad can work at one time.
(3) Connection between inverter RS485 interface and upper machine(with RS232 interface):

RS232/RS485 converter			Shielded cable		
Terminal explain		Name		Signal	Pin no.
5Vpower positive		$+5 \mathrm{~V}$		PE	shell
Sending data line				RXD	2
		TXD		TXD	3
Receivingdata line		RXD			5
5VPower ground		GND	DTR	4
4				DSR	6
Name	Terminal explain			RI	9
B	Signal negative end			CD	1
A	Singnal positive end			RTS	7
				CTS	8

Fig. 3-16 RS485 communication wiring
(4) Multiple inverters can be connected together per RS485 and 31pcs inverter can be connected together at most. Communication system is more prone to disturbance as connected inverters increasing, following wiring is recommended:

Fig. 3-17 recommended wiring for multiple inverters communication (all inverters and motors well earthed)
Normal communication still not available if using above wiring, can try to take following measure:
$1>$ Provide separate power supply for PLC (or upper machine) or isolate its power supply.
2> Apply magnetic circle on the communication wire.
$3>$ Reduce inverter carrier wave frequency properly.
(1) When form the network only by inverters, you must set local address parameter F2.15 of the mainframe EDS 1000 to 0.
(2) For programming of RS485 interface, please refer to appendix communication protocol.

3.7 Installation guide for anti-jamming

Main circuit of the inverter is composed of high-power semiconductor switch gear, so some electromagnetic noise will arise during work, to reduce or stop disturbance to environment, show you assembling method of inverter disturbance suppressing from many aspects such as disturbance suppressing, spot wiring, system grounding, leak current, usage of power supply filter etc. in this section to be referred to during spot assembling.

3.7.1 Restraining to noise disturbance

Disturbance brought by the working inverter may affect nearby electronic device, effect degree relates to surrounding electromagnetic environment of the inverter and anti-disturbance capacity of this device.

(1) Type of disturbance noise

According to work principle of the inverter, there are mainly 3 kinds of noise disturbance source:
$1>$ circuit conduction disturbance;
$2>$ space emission disturbance;
$3>$ electromagnetic induction disturbance;

Fig.3-18 type of noise disturbance

(2) Noise spread road

Fig.3-19 noise disturbance spread road sketch
(3) basic countermeasure for suppressing disturbance

Table 3-7 disturbance suppressing countermeasure table

Noise spread road	Countermeasure of weakening effect
(1)	When grounding wire of peripheral device and wiring of the inverter compose closed-loop, inverter grounding wire leakage current would make the device do wrong action. Can reduce wrong action if the device is not earthed here.
(2)	High-order harmonic from the inverter would make voltage and current transmit through power supply wire when peripheral device and the inverter electrified by same power supply, would disturb other devices in this same power supply system, can take following suppressing measure: assemble electromagnetic noise filter at inverter input end; isolate other devices by isolation transformer; connect power supply for peripheral device with remote power source; install ferrite filter magnetic circle for R, S, T three-phase conducting wire of the inverter to suppress conduction of high-frequency harmonic current.
Keep device and signal wire prone to disturbance from the inverter. Should	
use shielded signal wire, shielding layer single end earthed and try best to keep away	
from the inverter and its input, output wire. If signal wire must intersect strong power	
cable, must keep them in real intersection and avoid parallel.	
- Install high-frequency noise filter(ferrite common module choke, folksay	
magnetic circle) separately at input, output root, which can effectively suppress	
emission disturbance from dynamic wire.	
Should place motor cable shield of biggish thickness, for instance set it in tube	
with biggish thickness (above 2mm) or bury it in cement slot. Dynamic wire set into	
metal tube and use shielding wire to be grounded (use 4-core motor cable, one side is	
earthed through the inverter, the other side connected to motor shell).	

(6)(7)8	To prevent parallel or bundled power and weak conducting wire; should keep away from inverter mounted device to the best and its wiring should keep away from power wire of the inverter such as R, S, T, U, V, W etc.. Should pay attention to relative mounting place between device with strong electric field or strong magnetic field and the inverter, should keep distance and vertical intersection.

3.7.2 Local wiring and earthing

(1) Avoid parallel cable from inverter to motor (U, V, W terminal education wire) and power supply wire ($\mathrm{R}, \mathrm{S}, \mathrm{T}$ terminal input wire). Should keep distance of 30 cm above.
(2) Try your best to place motor table from

U, V, W terminals in metal tube or metal wiring slot.

(3) Should use shielded cable as common control signal cable, shielding layer close-to-inverter side earthed after connected with PE terminal of inverter.
(4) Cable educed from inverter PE terminal must be connected directly to earth-plate and can't be connected to ground through grounding wire of other devices.
(5) Powerful cable(R, S, T, U, V, W)should not parallel control signal cable closely, say nothing of being bundled together, must keep distance of $20 \sim 60 \mathrm{~cm}$ above (related to size of powerful current). Should cross each other vertically if intersection, as Fig.3-20.
(6) Powerful grounding wire must be connected to earth separately from weak grounding cable such as control signal and sensor cable etc.
(7) Forbid to connect other electricity consumption device to inverter power supply input end(R, S, T).

3.7.3 Relation of long-distance wiring and current leak and the countermeasure

High-order harmonic will form between-line leak current through distributing capacitor and to-earth leak current when long-distance wiring between inverter and motor commence. Can adopt following method to suppress:
(1) install ferrite magnetic circle or output reactor at inverter output side.

End voltage of the motor will be reduced markedly when installing reactor of 5\%

Aabove rated voltage dropn and make long-distance wiring to U, V, W. Fully loaded motor have the danger of burning itself, should work in lower volume or step up its input output voltage.
(2) Reduce carrier wave frequency but motor noise would increase accordingly.

3.7.4 Installation demand for electromagnetic on-off electronic device

Relay, magnetic control conductor and electromagnetic iron and so on,
these electromagnetic on-off electronic device would bring lots of noise during work, so you should pay full attention to when installing them beside the inverter or in the same control chamber with the inverter and must install surge absorbing device as shown in Fig. 3-21.

Fig.3-21 installation demand for electromagnetic on-off device

4 Run and operation explanation for inverter

4.1 Run of inverter

4.1.1 Running order channels

There are 3 kinds of order channel for controlling run action of the inverter such as run, stop, jog etc.:

0 : keypad

Control by key RUN STOP $\frac{\text { REV }}{106}$ on keypad(factory default).

1: Control terminal

Use control terminal FWD, REV, COM to make of double-line control, or use one terminal of X1 \sim X8 and FWD or REV to make of three-line control.

2: Serial port

Control run and stop of the inverter through upper machine or other device which can communicate with the inverter.
Choose order channel by setting function code F0.02; and also can choose by multi-function input terminal(F5.00~F5.07 choose function 29, 30, 31).

A
Please make switching debugging in advance when switch the order channel to check if it can fulfil system requirement, otherwise have danger of damaging device and injuring personal.

4.1.2 Frequency-provision channel

EDS1000 common run mode there are 10 kinds of provision channel:
0: keypad analog potentiometer provision;
1: direct digital frequency provision;
2: terminal UP/DOWN provision(store after power-off or stop);
3: serial port provision;
4: analog value VCI provision;
5: analog value CCI provision;
6: analog value YCI provision;
7: terminal pulse(PULSE) provision;
8: combination set;
9: terminal UP/DOWN provision(not store after power-off or stop)

4.1.3 Work state

Work state of EDS1000 is classified as waiting state and running state: waiting state: If there is no running command after the inverter electrified or after stop command during running state, the inverter enters into waiting state. running state: the inverter enters into running state after receiving run command.

4.1.4 Run mode

EDS1000 inverter have 6 kinds of run mode, following is in turn according to their priority: jog run \rightarrow closed-loop run $\rightarrow \mathrm{PLC}$ run \rightarrow multisection speed run \rightarrow swing frequency run \rightarrow common run. Shown as Fig.4-1.

Fig.4-1 logic flow chart of EDS1000 inverter run state

0: jog run

Upon receiving jog run command (for instance, press the $\frac{\text { REV }}{106}$ key on keypad) during waiting state, the inverter run at jog frequency (see function code F2.06~F2.08).

1: closed-loop run

The inverter will come into closed-loop run mode when closed -loop run control effective parameter is $\operatorname{set}(\mathrm{F} 3.00=1)$. Namely carry on PID adjustment to specified value and feedback value(proportion integral differential calculation, see F3 group function code) and PID adjustor output is inverter output frequency. Can make closed-loop run mode ineffective and switch to lower level run mode by multi-function terminal (function 20).

2: PLC run

The inverter will enter into PLC run mode and run according to run mode preset(see F4 group function code description) through setting PLC function effective parameter(F4.00 last bit $\neq 0$). Can make PLC run mode ineffective and switch to lower level run mode by multi-function terminal (function 21).

3: multi-section speed run

By nonzero combination of multi-function terminal(1, 2, 3, 4 function), choose multisection frequency $1 \sim 7(F 2.30 \sim \mathrm{~F} 2.36)$ to run at multisection speed.

4: swing frequency run

The inverter will enter into swing frequency run mode when swing frequency function effective parameter($\mathrm{F} 6.00=1$) is set. Set relevant swing frequency run special parameter according to textile swing frequency craft to realize swing frequency run.

5: common run

Common open loop run mode of general inverter.
In above 6 kinds of run mode except "jog run" the inverter can run according to kinds of frequency setting method. In"PID run" "PLC run" "multisection run"
"common run" mode the inverter can also carry on pendular frequency adjustment.

4.2 Operation and use of key board

4.2.1 Keypad layout

Keypad is main unit for receiving command, displaying parameter. Outer dimension of EN-KB6 is as Fig.4-2:

Fig.4-2 keypad layout sketch

4.2.2 Keypad function description

There are 8 key-presses and one adjusting button for analog potentiometer on inverter Keypad and function definition of each key is as shown in table 4-1.

Table 4-1 keypad function table

key	name	Function description
	Program/Exit key	Enter into or exit programming state
SHIFT	Shift/Supervision key	Can choose modification digit of set data under editor state; can switch display status supervision parameter under other state.
ENTER	Function/Data key	Enter into the next menu or data confirmation
$\frac{\text { REV }}{106}$	Rev/Jog key	Under keypad mode, to press this key can set reverse run or Jog run according to the $2^{\text {nd }}$ bit of parameter F0.03
RUN	Run key	Enter into forward run under keypad mode
$\begin{aligned} & \text { STOP } \\ & \text { RESED } \\ & \hline \end{aligned}$	Stop/reset key	In common run status the inverter will be stopped according to set mode after pressing this key if run command channel is set as keypad stop effective mode. The inverter will be reset and resume normal stop status after pressing this key when the inverter is in malfunction status.

	Analog potentiometer	Be used to set frequency; when F0.00=0 value set by analog potentiometer is frequency provision
Increasing button	To increase data or function code (to press it continuously can improve increasing speed)	
Decreasing button	To decrease data or function code (to press it continuously can improve decreasing speed)	

4.2.3 LED and indicator light

4 status indicator light: they are MOD(mode), ALM(alarm), FWD(forward run), REV(reverse run)from left to right on the LED, their respective indicating meaning is as shown in table 4-2.

Table 4-2 status indicator light description

item			Function description	
	Digital display		Display current run status parameter and set parameter	
		A, Hz, V	unit for relevant current digital displayed physical parameter(for current is A , for voltage is V , for frequency is Hz)	
		MOD	This indicator light is lit in nonsupervision status and extinguished if no key pressed for a minute, then come back to supervision status	
		ALM	Alarm indicator light, indicate that the inverter is in over current or over voltage suppressing status or failure alarm status currently	
		FWD	Forward run indicator light, indicate that the inverter output forward phase order and the connected motor rotate in forward direction	The inverter work in DC brake status if
		REV	reverse run indicator light, indicate that the inverter output reverse phase order and the connected motor rotate in reverse direction	indicator light is lit at the same time

4.2.4 Key board display status

EDS1000 keypad display status is classified as waiting status parameter display, function code parameter editing status display, malfunction alarm status display, run status parameter display in total 4 kinds of status. LED indicator light will all be lit after the inverter electrified, and digital display LED will display character "-EN-", then enter into set frequency display. As shown in Fig.4-3 a.

(1) waiting parameter display status

The inverter is in waiting status and waiting status supervision parameter is displayed on keyboard, normally parameter F3.28 decide which status supervision parameter to be displayed. As shown in Fig.4-3 b, the unit is indicated by rightward unit indicator light.

To press SHIFT key, it can display different waiting status supervision parameter circularly(display 15 kinds of supervision parameter of C group acquiescently, whether the last 7 kinds of supervision parameter are displayed is difined by function code F2.11, F2.12, for detail please see C group status
supervision parameter in function parameter schedule graph of chapter 5).

(2) run parameter display status

The inverter enters into run status when receiving effective run command and normally parameter F3.28 decide which status supervision parameter to be displayed on the keypad. As shown in Fig.4-3 c, unit is displayed by rightward unit indicator light.

To press SHIFT key, can display run status supervision parameter circularly (defined by function code F2.11 and F2.12). During displaying, can press $\frac{\text { ENTER }}{\text { DATA }}$ to switch to initial supervision parameter decided by F3.28, otherwise will display the last displayed parameter all along.

Fig.a electrification, display-EN-

Fig.b
waiting status, display waiting status parameter

Fig.c run status, display run status parameter

Fig.4-3 inverter electrification, waiting, run status display

(3) Failure alarm display status

The inverter enters into failure alarm display status upon detecting failure signal and display failure code sparklingly(as shown in Fig.4-4); To press SHIFT key can look over relative parameter after stopping running; Can press $\frac{\text { ESC }}{\text { MENU }}$ key to enter into program status to see about Fd group parameter if want to search failure information.

Fig.4-4 failure alarm

Can carry on failure restoration by $\frac{\text { STOP }}{\text { RESED }}$ key, control terminal or communication command on the keypad after troubleshooting. Keep displaying failure code if failure exist continuously. etc., must not carry on failure reset forcibly to make the inverter run again without failure elimination confirmed. Otherwise have danger of damaging the inverter!

(4) function code editing status

Under waiting, run or failure alarm status, press

key, can enter into editing status(If user password is set, can enter into editing status after inputting the password, see also FF. 00 description and Fig.4-10), and editing status is displayed according to three classes menu mode, as shown in Fig. 4-5. To press
ENTER key can enter into one class by one class. Under function parameter display status, to press ENTER DATA key to carry on parameter storage operation; To press $\frac{\text { ES }}{\text { MENU }}$ key can only come back to upper class menu without stroring modified parameter.

Fig.4-5 keypad display status switching

(5) Special display function

You can change set frequency under supervision state directly when keypad potentiometer is effective $(\mathrm{F} 0.00=0)$ or keypad digital setting is effective ($\mathrm{F} 0.00=1$). Here the inverter displays set frequency if it's stop or displays output frequency if it's running. After set frequency stops changing for 1 second the inverter will go back to normal display status.

4.2.5 Method for operating keypad

Can carry on various operation to the inverter through keypad, for example:
(1) Status parameter display switching:

After pressing key SHIFT, display C group status supervision parameter; after displaying one supervision parameter code for 1 second, will display this parameter value automatically.

Fig. 4-6 waiting status parameter display operating example
Description:
$1>$ All status parameters $\mathrm{C}-00 \sim \mathrm{C}-14$ can be displayed when the inverter leaves factory. You can make a change by modifying function code F2.11, F2.12 if you want to, for detail please refer to F2.11, F2.12function code description.
$2>$ Can press $\frac{\text { ENTER }}{\text { DATA }}$ key to switch into constant supervision C-01 display status directly when the user see about status supervision parameter.
(2) Function code parameter setting

Take function code F2.06 modified from 5.00 Hz to 6.00 Hz as example.
Boldface in Fig.4-7 shows flickering digit.

Fig.4-7 example for parameter setting and modification
Description: under third-class menu, if the parameter has no blinking digit, this function code can't be modified, possible reasons are as follows:
$1>$ This function code shouldn't be modified, for example actual detected status parameter, run record parameter etc.;
This function code can't be modified under run status and can be changed after stopping running;

3> Parameter protected. All the function code can't be modified when function code $\mathrm{F} 2.13=1$ or 2 , in order to avoid wrong operation. Need to set the function code F2.13 to 0 if you want to edit function code parameter.

(3) Specified frequency adjustment for common run

Take example modifying specified frequency from 50.00 Hz to 40.00 Hz at $F 0.00=0$ during running for explanation.

Fig. 4-8 set frequency adjustment operation example

(4) Jog run operation

For example, keypad as current run command channel, jog run frequency 5 Hz , waiting status.

Fig.4-9 Jog run operating example
(5) Operation for entering to function code editing status after setting user password
"user password"FF. 00 is set to " 6886 ". Boldfaced digit in Fig.4-7 shows
blinking bit.

Fig.4-10 inputting password to go into function code operation
(6) See about failure parameter under failure status:

Fig.4-11 failure status searching operation example
Description:
$1>$ If press SHIFT key under failure status the user can see about Fd group function code parameter, search range Fd. $06 \sim$ Fd. 14, LED first display function code number when the user press SHIFT key and display parameter digit of this function code after 1 s .
$2>$ When the user see about failure parameter, can press
 switch back to failure alarm display status (E0XX)

(7) keypad key-press locking operation

Under unlocked keypad situation, press ESC key for 5 s to lock the keypad. For detailed operation please refer to $2^{\text {nd }}$ bit of F 2.13 function code.
(8) keypad key-press unlocking operation

Under locked keypad situation, press

key for 5 s to unlock the keypad.

4.3 Inverter electrification

4.3.1 Check before electrification

Please carry on wiring based on operation requirement provided in "inverter wiring" of this Service manual.

4.3.2 First electrification

Close input side AC power supply switch after correct wiring and power supply confirmed, electrify the inverter and keypad LED display "-EN-", contactor closed normally, LED displayed set frequency shows that electrification is finished. First electrification operation process is shown as figure in the page.

Fig. 4-12 first electrification operation flow

5 Function parameter schedule graph

5.1 Symbol description

\times---- parameter can't be changed in process of running
○ ---- parameter can be changed in process of running

* ---- read-only parameter, unmodifiable

5.2 Function parameter schedule graph

F0-Basic run function parameter group					
Function code	Name	Set range	Min. unit	Factory default	Modifi -cation
F0.00	Frequency input channel selection	0: keypad analog potentiometer setting 1: keypad digital setting 2: terminal UP/DOWN adjust setting freq. (stored after power off or stop) 3: serial port provision(not stored after power off) VCI analog setting (VCI-GND) CCI analog setting (CCI-GND) YCI analog setting (YCI-GND) terminal pulse (PULSE) setting combination setting 9: terminal UP/DOWN adjust setting freq. (not stored after power off) 10: serial port provision (stored after power off) 11:terminal PWM pulse width set frequency.	1	1	\bigcirc
F0. 01	Freq. digit setting	Lower limit Freq. \sim upper limit Freq.	0.01 Hz	50.00 Hz	\bigcirc
F0.02	Run command channel selection	0: keypad run control 1: terminal run command control (keypad stop command ineffective) 2: terminal run command control (keypad stop command effective) 3: serial port run command control (keypad stop command ineffective) 4: serial port run command control (keypad stop command effective)	1	0	\bigcirc
F0.03	Run direction setting	$\begin{array}{\|lc} \hline 1^{\text {st }} & \text { bit: } 0, \text { forward run; } 1, \text { reserved } \\ 2^{\text {nd }} & \text { bit: } 0, \text { reverse run allowed } \\ 3^{\text {rd }} & \text { bit: } \text { reverse run banned } \\ & \text { 0: as reversey selection } \\ & \text { 1: as jog key } \end{array}$	1	100	\bigcirc
F0.04	Acce/Dece mode selection	0: linear Acce/Dece mode 1: S curve Acce/Dece mode	1	0	\times
F0.05	S curve start time	$\begin{array}{\|l\|} \hline 10.0(\%)-50.0(\%)(\text { Acce/Dece time }) \\ \text { F0.05+F0.06 } \leqslant 90(\%) \\ \hline \end{array}$	0.1(\%)	20.0(\%)	\bigcirc
F0.06	S curve rising time	$\begin{array}{\|l\|} \hline 10.0(\%)-70.0(\%)(\text { Acce/Dece time }) \\ \text { F0.05+F0.06 } \leqslant 90(\%) \\ \hline \end{array}$	0.1(\%)	60.0(\%)	\bigcirc
F0.07	Acce/Dece time unit	$\begin{array}{\|l\|l\|} \hline 0: \text { second } \\ 1: \text { minute } \\ \hline \end{array}$	1	0	\times
F0.08	Acce time 1	0.1-6000.0	0.1	20.0	\bigcirc
F0.09	Dece time 1	0.1-6000.0	0.1	20.0	\bigcirc
F0.10	Upper limit freq.	Lower limit freq. -400.00 Hz	0.01 Hz	50.00 Hz	\times

F0.11	Lower limit freq.	0.00-Upper limit freq.	0.01 Hz	0.00 Hz	\times
F0.12	Lower limit freq. run mode	0 : run at lower limit freq. 1: stop by slow down 2: free stop	1	0	\times
F0.13	Torque boost mode	0: manual boost 1: automatic boost	1	0	\bigcirc
F0.14	Torque boost	0.0-12.0 (\%)	0.1(\%)	2.0(\%)	\bigcirc
F0.15	V/F curve setting	0: constant torque curve 1: degressive torque curve 1 (the 2.0 nd power) 2: degressive torque curve 2 (the 1.7th power) 3: degressive torque curve 3 (the 1.2 th power) 4: End-user sets VF curve himself(determined by F2.37~F2.44) F2.37 VF Freq. value 0 F2.38 VF voltage value 0 F2.39 VF Freq. value 1 F2.40 VF voltage value 1 F2.41 VF Freq. value 2 F2.42 VF voltage value 2 F2.43 VF Freq. value 3 F2.44 VF voltage value 3 Remark: VF frequency and voltage can't be 0 or maximum	$\begin{gathered} 0.01 \mathrm{~Hz} \\ 0.01 \% \\ 0.01 \mathrm{~Hz} \\ 0.01 \% \\ 0.01 \mathrm{~Hz} \\ 0.01 \% \\ 0.01 \mathrm{~Hz} \\ 0.01 \% \end{gathered}$	10.00 Hz 20.00\% 20.00 Hz 40.00\% 25.00 Hz 50.00\% 40.00 Hz 80.00\%	\times
F0.16	G/P type setting	0: G type 1: P type	1	0	\times

F1 - Start, stop, braking function parameter group					
Function code	Name	Set range	Min. unit	Factory default	Modifi -cation
F1.00	Start run mode	$\begin{aligned} & \text { 0: start from starting freq. } \\ & \text { 1: first brake, then start from starting freq. } \\ & \text { 2: Start after inspecting speed } \\ & \hline \end{aligned}$	1	0	\times
F1.01	starting freq.	$0.0-10.00 \mathrm{~Hz}$	0.01 Hz	0.00 Hz	\bigcirc
F1.02	starting freq. duration time	0.0-20.0S	0.1s	0.0s	\bigcirc
F1.03	DC brake volt. when starting	0-15(\%)	1	0	\bigcirc
F1.04	DC brake time when starting	0.0-20.0s	0.1s	0.0s	\bigcirc
F1.05	Stop mode	$\begin{array}{\|l\|} \hline \text { 0: Dece stop } \\ \text { 1: free stop } \\ \text { 2: Dece }+ \text { DC brake stop } \\ \hline \end{array}$	1	0	\times
F1.06	DC brake initiative freq. when stop	$0.0-15.00 \mathrm{~Hz}$	0.01 Hz	0.00 Hz	\bigcirc
F1.07	DC brake time when stop	0.0-20.0s	0.1s	0.0s	\bigcirc
F1.08	DC brake voltage when stop	0-15(\%)	1	0	\bigcirc

F2-Auxiliary run function parameter group					
Function code	Name	Set range	Min. unit	Factory default	Modifi -cation
F2.00	Analog filter time constant	0.00-30.00s	0.01 s	0.20s	\bigcirc
F2.01	Forward reverse run dead-section time	0.0-3600.0s	0.1s	0.1s	\bigcirc
F2.02	Automatic energy save run	0: no action 1: action	1	0	\times
F2.03	AVR function	$\begin{aligned} & \text { 0: no action } \\ & \text { 1: action all the time } \\ & \text { 2: no action only during Dec } \end{aligned}$	1	0	\times
F2.04	Slip frequency compensation	$0 \sim 150(\%) 0$-no slip frequency compensation	1	0	\times
F2.05	Carrier wave freq.	$2-15.0 \mathrm{~K}$	0.1K	depend on machine type	\times
F2.06	Jog run frequency	$0.10-50.00 \mathrm{~Hz}$	0.01 Hz	5.00 Hz	\bigcirc
F2.07	Jog Acce time	0.1-60.0s	0.1s	20.0s	\bigcirc
F2.08	Jog Dece time	0.1-60.0s	0.1s	20.0s	\bigcirc
F2.09	Frequency input channel combination	```VCI +CCI VCI-CCI \(\mathrm{YCI}+\mathrm{CCI}\) RS485+YCI \(\mathrm{VCI}+\mathrm{YCI}\) reserved exterior pulse provision + CCI exterior pulse provision-CCI reserved : reserved 0: reserved reserved : reserved : VCI, CCI any nonzero value effective, VCI preferred 14: reserved 5: RS485+CCI 16: RS485-CCI 17: RS485+VCI : RS485-VCI RS485+keypad potentiometer RS485- keypad potentiometer VCI + keypad potentiometer VCI- keypad potentiometer : CCI+ keypad potentiometer : CCI- keypad potentiometer reserved reserved : reserved 28: reserved```	1	0	\times
F2.10	Main \& sub inverter communication frequency provision proportion	0-500(\%)	1(\%)	100(\%)	\bigcirc

F2.11	LED display control 1	```0000-1111 first bit: running time 0 : not display 1: display second bit: accumulative time 0 : not display 1: display third bit: input terminal status 0 : not display 1: display kilobit(fourth bit): output terminal status 0 : not display 1: display```		1111	\bigcirc
F2.12	LED display control 2	```0000-1111 first bit: analog input VCI 0: not display 1: display second bit: analog input YCI 0: not display 1: display third bit: analog input CCI 0: not display 1: display kilobit(fourth bit): exterior pulse input 0: not display 1: display```	1	1111	\bigcirc
F2.13	Parameter operation control	LED 1 ${ }^{\text {st }}$ bit: 0 : all parameter allowed to be modified 1: except this parameter, all other parameter not allowed to be modified 2: except F0.01 and this parameter, all other parameter not allowed to be modified LED $2^{\text {nd }}$ bit: 0 : no action 1: renew factory default 2: clear history failure record LED 3 ${ }^{\text {rd }}$ bit: 0: not locked 1: all buttons locked except STOP key 2: all buttons locked except \bigcirc, STOP key 3: all buttons locked except RUN, STOP key 4: all buttons locked except SHIFT, STOP key	1	0	\times
F2.14	Communication configuration	LED first bit: baud rate selection 0: 1200BPS 1: 2400BPS 2: 4800BPS 3: 9600BPS 4: 19200BPS 5: 38400BPS	1	03	\times

		LED second bit: data format 0: 1-8-1 format, no checkout 1: 1-8-1 format, even checkout 2: 1-8-1 format, odd checkout			
F2.15	Local address	$0-127,127$ is broadcast address. The inverter only receive but not send when it is set to be 127,0 is address for main device.	1	1	\times
F2.16	Communication overtime checkout time	0.0-1000.0s	0.1s	0.0s	\times
F2.17	Local response delay time	0-1000ms	1 ms	5 ms	\times
F2.18	Acce time 2	0.1-6000.0	0.1	20.0	\bigcirc
F2.19	Dece time 2	0.1-6000.0	0.1	20.0	\bigcirc
F2.20	Acce time 3	0.1-6000.0	0.1	20.0	\bigcirc
F2.21	Dece time 3	0.1-6000.0	0.1	20.0	\bigcirc
F2.22	Acce time 4	0.1-6000.0	0.1	20.0	\bigcirc
F2.23	Dece time 4	0.1-6000.0	0.1	20.0	\bigcirc
F2.24	Acce time 5	0.1-6000.0	0.1	20.0	\bigcirc
F2.25	Dece time 5	0.1-6000.0	0.1	20.0	\bigcirc
F2.26	Acce time 6	0.1-6000.0	0.1	20.0	\bigcirc
F2.27	Dece time 6	0.1-6000.0	0.1	20.0	\bigcirc
F2.28	Acce time 7	0.1-6000.0	0.1	20.0	\bigcirc
F2.29	Dece time 7	0.1-6000.0	0.1	20.0	\bigcirc
F2.30	Muti-step freq. 1	Lower limit freq.-upper limit freq.	0.01 Hz	5.00 Hz	\bigcirc
F2.31	Muti-step freq. 2	Lower limit freq.- upper limit freq.	0.01 Hz	10.00 Hz	\bigcirc
F2.32	Muti-step freq. 3	Lower limit freq.-upper limit freq.	0.01 Hz	20.00 Hz	\bigcirc
F2.33	Muti-step freq. 4	Lower limit freq.-upper limit freq.	0.01 Hz	30.00 Hz	\bigcirc
F2.34	Muti-step freq. 5	Lower limit freq. - upper limit freq.	0.01 Hz	40.00 Hz	\bigcirc
F2.35	Muti-step freq. 6	Lower limit freq. - upper limit freq.	0.01 Hz	45.00 Hz	\bigcirc
F2.36	Muti-step freq. 7	Lower limit freq.-upper limit freq.	0.01 Hz	50.00 Hz	\bigcirc
F2.37	$\begin{array}{\|ll\|} \hline \mathrm{VF} & \text { frequency } \\ \text { value } 0 \end{array}$	0.00-F2.39	0.01 Hz	10.00 Hz	O
F2.38	VF voltage value 0	0.00-F2.40	0.01\%	20.00\%	O
F2.39	$\begin{array}{\|lr\|} \hline \begin{array}{ll} \mathrm{VF} & \text { frequency } \\ \text { value } 1 \end{array} \\ \hline \end{array}$	F2.37-F2.41	0.01 Hz	20.00 Hz	\bigcirc
F2.40	VF voltage value 1	F2.38-F2.42	0.01\%	40.00\%	O
F2.41	$\begin{array}{\|lr\|} \hline \mathrm{VF} & \text { frequency } \\ \text { value 2 } \end{array}$	F2.39-F2.43	0.01 Hz	25.00 Hz	O
F2.42	VF voltage value 2	F2.40-F2.44	0.01\%	50.00\%	O
F2.43	VF frequency value 3	F2.41-high limit frquency	0.01 Hz	40.00 Hz	\bigcirc
F2.44	VF voltage value 3	F2.42-100.0\% (rated voltage)	0.01\%	80.00\%	\bigcirc
F2.45	Jumping freq. 1	$0.00-400.00 \mathrm{~Hz}$	0.01 Hz	0.00 Hz	\times
F2.46	Jumping freq. 1 range	$0.00-30.00 \mathrm{~Hz}$	0.01 Hz	0.00 Hz	\times
F2.47	Jumping freq. 2	$0.00-400.00 \mathrm{~Hz}$	0.01 Hz	0.00 Hz	\times
F2.48	$\mathrm{J} u m p i n g ~ f r e q . ~ 2 ~$ range	0.00-30.00Hz	0.01 Hz	0.00 Hz	\times
F2.49	Jumping freq. 3	$0.00-400.00 \mathrm{~Hz}$	0.01 Hz	0.00 Hz	\times

F2.50	$\begin{array}{\|l} \hline \begin{array}{l} \text { Jumping } \\ \text { range } \end{array} \\ \hline \end{array}$	$0.00-30.00 \mathrm{~Hz}$	0.01 Hz	0.00Hz	\times
F2.51	Sett run time	0-65535 hours	1	0	\bigcirc
F2.52	Run time accumulation	0-65535 hours	1	0	*
F2.53	RS485/232 communication frame format selection	0: a ASCII frame of 14 byte or 18 byte 1: a hex frame of 8 byte or 10 byte, original response not changed 2: a hex frame of 8 byte or 10 byte, 12 command has no response 3: a hex frame of 8 byte or 10 byte, 14 command has no response 4: a hex frame of 8 byte or 10 byte, both 12 and 14 command have no response	1	0	\times

F3-Closed-loop run function parameter group					
Function code	Name	Set range	Min. unit	Factory default	Modifi -cation
F3.00	Closed-loop run control selection	0: closed-loop control ineffective 1: PID closed-loop control effective 2:constant pressure water supply PID control effective(F5.10~F5.13 must be set to 21)	1	0	\times
F3.01	Provision channel selection	0: digital provision 1: VCI analog $0-10 \mathrm{~V}$ voltage provision 2: CCI analog provision 3: keypad analog potentiometer provision	1	1	\bigcirc
F3.02	Feedback channel selection	```0 : VCI analog input voltage \(0-10 \mathrm{~V}\) 1: CCI analog input \(\mathrm{VCI}+\mathrm{CCI}\) VCI-CCI Min \{ VCI, CCI \} 5: Max \{ VCI, CCI \} 6: pulse feedback```	1	1	\bigcirc
F3.03	Specified value digital setting	$0.000 \sim 9.999 \mathrm{~V}$ (setF3.00 $=1, \mathrm{~F} 3.21=9.999$)	0.001	1.000	\bigcirc
	Target pressure value setting	0.000~F3.21Mpa(setF3.00=2)	0.001	1.000	\bigcirc
F3.04	Minimum specified value	$0.0-$ maximum specified value; percentage relative to 10.00 V	0.1(\%)	0.000	\bigcirc
F3.05	Corresponding feedback value responding of minimum specified value	0.0-100.0(\%)	0.1(\%)	0.000	\bigcirc
F3.06	maximum specified value	Minimum specified value $-100.0(\%)$	0.1(\%)	100.0(\%)	\bigcirc
F3.07	Corresponding feedback value responding of maximum specified value	0.0-100.0(\%)	0.1(\%)	100.0(\%)	\bigcirc
F3.08	proportion gain Kp	0.000-9.999	0.001	0.050	\bigcirc
F3.09	Integral gain Ki	0.000-9.999	0.001	0.050	\bigcirc
F3.10	Differential gain Kd	0.000-9.999	0.001	0.000	\bigcirc

F3.11	Sampling cycle T	0.01-1.00s	0.01 s	0.10s	\bigcirc
F3.12	Deviation limit	$0.0-20.0(\%)$ percentage relative to 10.00 V	0.1(\%)	2.0(\%)	\bigcirc
F3.13	Integral separation PID adjusting threshold	0.0-100.0\%	0.1\%	100.0\%	\bigcirc
F3.14	Closed-lop preset frequency	0-upper limit frequency	0.01 Hz	00.00	\bigcirc
F3.15	Closed-loop preset frequency holding time	0.0-6000s	0.1s	000.0	\bigcirc
F3.16	Sleep frequency threshold	$0.00-400.00 \mathrm{~Hz}$	0.01 Hz	30.00	\bigcirc
F3.17	Wake pressure threshold	0.000-F3.21Mpa	0.001	0.500	\bigcirc
F3.18	Sleep delay time	0.0-6000.0s	0.1	000.0	\bigcirc
F3.19	Revival delay time	0.0-6000.0s	0.1	000.0	\bigcirc
F3.20	Constant pressure water supply mode 1	0 : inverter works in one-drive-two water supply mode 1: constant pressure water supply board acts in one-drive-two mode 2: constant pressure water supply board acts in one-drive-three mode 3: constant pressure water supply board acts in one-drive-four mode	1	0	\times
F3.21	Long-distance manometer range	0.001-9.999Mpa	0.001	9.999	\bigcirc
F3.22	Allowed offset to upper limit frequency and lower limit frequency when add or reduce pumps	0.1-100.0\%	0.1	001.0	\bigcirc
F3.23	Pump switch judging time	0.0-999.9s	0.1	005.0	\bigcirc
F3.24	Magnetic control conductor switch delay time	0.1-10.0s	0.1	00.5	\bigcirc
F3.25	Automatic switch intervel	0000-9999minutes	1	0000	\times
F3.26	Water supply supervision parameter display	0 : C-11, C-12 denote voltage value of VCI, CCI 1: C-11, C-12 denote PID specified pressure and feedback pressure	1	0	\bigcirc
F3.27	Closed-loop adjusting characteristic	0 : Forward function 1: Reverse function		0	\bigcirc
F3.28	LED initial supervision parameter selection	0 : set frequency 1: output frequency 2: output current 3: output voltage 4: DC bus bar voltage 5: motor speed 6: heat sink temperature 7: run time 8: accumulative run time 9: input terminal status 10: output terminal status 11: analog input VCI/PID provision 12: analog input CCI/PID feedback		1	O

		13: analog input YCI 14: exterior pulse inputs			
F3.29	YCI run-in delay time	0.0-999.9s	0.0	10.0	\bigcirc
F3.30	Failure relay TA, TB, TC function selection	0 : inverter running(RUN) frequency arriving signal(FAR) frequency level detect signal (FDT1) reserved overload warning alarm signal (OL) output frequency reach high limit(FHL) output frequency reach low limit(FLL) inverter under voltage blockage stop (LU) external failure stop-running(EXT) inverter zero speed running PLC running simple PLC section running finished PLC finish a cycle running reserved inverter ready to run (RDY) inverter failure traverse high and low limit restriction interior counter reach final value interior counter reach specified value set run time arriving 20: interior timing arriving 21: reserved 22: reserved 23: reserved 24: reserved		15	\bigcirc
F3.31	Reserved				

F4-Simple PLC function parameter group					
Function code	Name	Set range	Min. unit	Factory default	Modifi -cation
F4.00	Simple PLC running setting	```LED first bit: 0 : no action 1: stop after single circulation 2: keep final value after single circulation 3: consecutive circulation LED second bit: 0 : start from first step 1: continue to run from step freq. of interruption moment LED third bit: PLC run time unit 0 : second 1: minute```	1	000	\times
F4.01	Section 1 setting	$\begin{aligned} & \hline 000-621 \\ & \text { LED first bit: frequency setting } \\ & \text { 0: multisection freq. } \mathrm{i}(\mathrm{i}=1 \sim 7) \\ & \text { 1: freq. determined by function code F0.00 } \\ & \text { LED second bit: run direction selection } \\ & \text { 0: forward run } \\ & \text { 1: reverse run } \\ & \text { 2: determined by run command(FWD, REV) } \\ & \text { LED third bit: Acc/Dec time selection } \\ & \hline \end{aligned}$	1	000	\bigcirc

		0: Acce/Dece time 1 1: Acce/Dece time 2 2: Acce/Dece time 3 3: Acce/Dece time 4 4: Acce/Dece time 5 5: Acce/Dece time 6 6: Acce/Dece time 7			
F4.02	Section 1 run time	$0-6000.0$	0.1	10.0	\bigcirc
F4.03	Section 2 setting	$000-621$	1	000	\bigcirc
F4.04	Section 2 run time	$0-6000.0$	0.1	10.0	\bigcirc
F4.05	Section 3 setting	$000-621$	1	000	O
F4.06	Section 3 run time	$0-6000.0$	0.1	10.0	\bigcirc
F4.07	Section 4 setting	$000-621$	1	000	\bigcirc
F4.08	Section 4 run time	$0-6000.0$	0.1	10.0	\bigcirc
F4.09	Section 5 setting	$000-621$	1	000	\bigcirc
F4.10	Section 5 run time	$0-6000.0$	0.1	10.0	\bigcirc
F4.11	Section 6 setting	$000-621$	1	000	\bigcirc
F4.12	Section 6 run time	$0-6000.0$	0.1	10.0	\bigcirc
F4.13	Section 7 setting	$000-621$	1	000	O
F4.14	Section 7 run time	$0-6000.0$	0.1	10.0	O

F5-Terminal correlative function parameter group					
Function code	Name	Set range	Min. unit	Factory default	Modifi -cation
F5.00	Input terminal X1 function selection	0: leave control terminal unused 1: multi-step speed control terminal 1 2: multi-step speed control terminal 2 3: multi-step speed control terminal 3 4: multi-step speed control terminal 4 5: external forward run jog control 6: external reverse run jog control 7: Acce/Dece time selecting terminal 1 8: Acce/Dece time selecting terminal 2 9: Acce/Dece time selecting terminal 3 10: external device failure input 11: external reset input 12: free stop input 13: external stop command 14: stop DC braking input command DB 15 : inverter run prohibition 16: frequency increasing control (UP) 17: frequency degression control (DOWN) 18: Acce/Dece prohibited command : three-line run control : closed-loop ineffective : PLC ineffective : simple PLC pause control : PLC stop status reset : frequency provision channel selection 1 frequency provision channel selection 2 frequency provision channel selection 3 : frequency switched to CCI command switched to terminal 29: run command channel selection 1 30: run command channel selection 2 31: run command channel selection 3		0	\times

		32: swing frequency jump-in 33: external interruption input 34: interior counter clearing end 35: interior counter triggering end 36: interior timer clearing end 37: interior timer triggering end 38: pulse frequency input(only effective for $\mathrm{X} 7, \mathrm{X} 8$) 39: reserved 40: reserved 41: reserved 42: reserved			
F5.01	Input terminal X2 function selection	Same as above			\times
F5.02	Input terminal X3 function selection	Same as above			\times
F5.03	Input terminal X4 function selection	Same as above			\times
F5.04	Input terminal X5 function selection	Same as above			\times
F5.05	Input terminal X6 function selection	Same as above			\times
F5.06	Input terminal X7 function selection	Same as above			\times
F5.07	Input terminal X8 function selection	Same as above			\times
F5.08	FWD/REV run mode selection	0: 2-wire control mode 1 1: 2-wire control mode 2 2: 3-wire control mode 1 3: 3-wire control mode 2	1	0	\times
F5.09	UP/DOWN velocity	0.01-99.99Hz/s	$0.01 \mathrm{~Hz} / \mathrm{s}$	$1.00 \mathrm{~Hz} / \mathrm{s}$	O
F5.10	Open circuit collector output terminal OC1 output setting	0 : inverter running signal(RUN) frequency arriving signal(FAR) frequency level detect signal (FDT1) reserved overload warning signal (OL) output frequency reach high limit(FHL) output frequency reach low limit(FLL) inverter under voltage blockage stop (LU) stop for exterior failure(EXT) inverter zero rotate speed running PLC running simple PLC segment running finished PLC finish one cycle run reserved inverter ready to run (RDY) inverter failure swing frequency high\&low limit restriction interior counter reach final value interior counter reach specified value set runtime arrive interior timing arrive 21: OC1-variable frequency for the $1^{\text {st }}$ pump OC2-power source for the $1^{\text {st }}$ pump OC3- variable frequency for the $2^{\text {nd }}$ pump OC4-power source for the $2^{\text {nd }}$ pump 22: reserved 23: reserved	1	0	\times

		24: reserved			
F5.11	Open circuit collector output terminal OC2 output setting	Same as above	1	0	\times
F5.12	Open circuit collector output terminal OC3 output setting	Same as above	1	0	\times
F5.13	Open circuit collector output terminal OC4 output setting	Same as above	1	0	\times
F5.14	Frequency arriving (FAR) detect range	$0.00-50.00 \mathrm{~Hz}$	0.01 Hz	5.00 Hz	\bigcirc
F5.15	FDT1 (frequency level) electric level	0.00-high limit frequency	0.01 Hz	10.00 Hz	\bigcirc
F5.16	FDT1 lag	$0.00-50.00 \mathrm{~Hz}$	0.01 Hz	1.00 Hz	\bigcirc
F5.17	Analog output (AO1) selection	```output frequency(\(0-\) high limit frequency) set frequency(0 -high limit frequency) output current \((0-2 \times\) rated current \()\) output voltage \((0-1.2 \times\) load motor rated voltage \()\) bus-bar voltage \((0-800 \mathrm{~V})\) PID provision \((0.00-10.00 \mathrm{~V})\) PID feedback (\(0.00-10.00 \mathrm{~V}\)) reserved reserved reserved```	1	0	\bigcirc
F5.18	Analog output (AO1) gain	0.00-2.00	0.01	1.00	\bigcirc
F5.19	Analog output (AO1) offset	$0.00-10.00 \mathrm{~V}$	0.01	0.00	\bigcirc
F5.20	Analog output (AO2) selection	Same as F5.17	1	0	O
F5.21	Analog output (AO2) gain	0.10-2.00	0.01	1.00	\bigcirc
F5.22	Analog output (AO2) offset	0.00-10.00V	0.01	0.00	O
F5.23	DO terminal output function selection	Same as F5.17	1	0	\bigcirc
F5.24	DO maximum pulse output frequency	$\begin{aligned} & \text { 0.1-20.0(max. } 20 \mathrm{KHz}) \mathrm{Max} . \text { DO port output pulse } \\ & \text { frequency corresponds to Max. value selected by } \\ & \text { F5.23 } \end{aligned}$	0.1 KHz	10.0	\bigcirc
F5.25	Set interior count number arriving provision	0-9999	1	0	\bigcirc
F5.26	Specified interior count number arriving provision	0-9999	1	0	O
F5.27	Interior setting	0.1-6000.0s	0.1	60.0	\bigcirc

F6-Traverse special function parameter group					
Function code	Name	Set range	Min. unit	Factory default	Modifi -cation
F6.00	Traverse function selection	0: traverse function not used 1: traverse function used	1	0	\times
F6.01	traverse run mode	LED first bit: jump-in mode 0: automatic jump-in mode 1: terminal manual jump-in mode LED second bit: 0: changing traverse amplitude 1: fixed traverse amplitude notice: traverse center frequency input channel set by F0.00 function parameter	1	00	\times
F6.02	Traverse amplitude threshold	0.0-50.0(\%)	0.1(\%)	0.0(\%)	\bigcirc
F6.03	Sudden jumping frequency	0.0-50.0(\%)	0.1(\%)	0.0(\%)	\bigcirc
F6.04	traverse cycle	0.1-999.9s	0.1s	10.0s	\bigcirc
F6.05	Triangle wave rising time	0.0-98(\%)(traverse cycle)	0.1(\%)	50.0(\%)	\bigcirc
F6.06	traverse preset frequency	$0.00-400.00 \mathrm{~Hz}$	0.01 Hz	0.00Hz	\bigcirc
F6.07	traverse preset frequency latency time	0.0-6000s	0.1s	0.0s	\bigcirc

F7-Frequency provision function parameter group

Function code	Name	Set range	Min. unit	Factory default	Modifi -cation
F7.00	VCI min. provision	0.00-F7.02	0.01 V	0.00 V	\bigcirc
F7.01	VCI min. provision corresponding freq.	0.00-high limit frequency	0.01 Hz	0.00 Hz	\bigcirc
F7.02	VCI max. provision	$0.00-10.00 \mathrm{~V}$	0.01 V	9.9 V	\bigcirc
F7.03	VCI max. provision corresponding freq.	0.00-high limit frequency	0.01 Hz	50.00 Hz	\bigcirc
F7.04	CCI min. provision	0.00-F7.06	0.01 V	0.00 V	\bigcirc
F7.05	CCI min. provision corresponding freq.	0.00-high limit frequency	0.01 Hz	0.00 Hz	\bigcirc
F7.06	CCI max. provision	$0.00-10.00 \mathrm{~V}$	0.01 V	9.9 V	\bigcirc
F7.07	CCI max. provision corresponding freq.	0.00-high limit frequency	0.01 Hz	50.00 Hz	\bigcirc
F7.08	YCI min. provision	0.00-F7.10	0.01 V	0.00 V	\bigcirc
F7.09	YCI min. provision corresponding freq.	$\begin{aligned} & 0.00-\text { high limit frequency } \\ & \text { (reverse run) }\end{aligned}$	0.01 Hz	50.00 Hz	\bigcirc
F7.10	YCI max. provision	$0.00-10.00 \mathrm{~V}$	0.01 V	9.9 V	\bigcirc
F7.11	YCI max. provision corresponding freq.	$\begin{array}{l}0.00 \text {-high limit frequency } \\ \text { (forward run) }\end{array}$	0.01 Hz	50.00 Hz	\bigcirc
F7.12	YCI dead area setting	$0.00 \mathrm{~V}-2.00 \mathrm{~V}$	0.01 V	0.10 V	\bigcirc
F7.13	PULSE max. input pulse	0.01-20.0K	0.01 K	10.0K	\bigcirc
F7.14	PULSE min. provision	$\begin{aligned} & \text { 0.0-F7.16(PULSE max. } \\ & \text { provision) } \end{aligned}$	0.01K	0.0K	\bigcirc
F7.15	PULSE min. provision corresponding freq.	0.00-high limit frequency	0.01 Hz	0.00 Hz	\bigcirc
F7.16	PULSE max. provision	F7.14 (PULSE min. provision) -F7.13 (max. input pulse)	0.1 K	10.0K	\bigcirc

F7.17	PULSE max. provision corresponding freq.	0.00 -high limit frequency	0.01 Hz	50.00 Hz	○

F8-Motor and vector control parameter group					
Function code	Name	Set range	Min. unit	Factory default	Modifi -cation
F8.00	Control mode setting	$\begin{aligned} & \hline 0: \mathrm{V} / \mathrm{F} \text { control } \\ & \text { 1: vector control } \\ & \text { remark: for EDS1300 it can't be } 1 \end{aligned}$	1	0	\times
F8.01	Motor rated voltage	$1-480 \mathrm{~V}$	1V	Depend on device type	\times
F8.02	Motor rated current	0.1-999.9A	0.1A	Depend on device type	\times
F8.03	Motor rated frequency	$1.00-400.00 \mathrm{~Hz}$	0.01 Hz	Depend on device type	\times
F8.04	Motor rated speed	1-9999r/min	$1 \mathrm{r} / \mathrm{min}$	Depend on device type	\times
F8.05	Motor pole quantity	$2-14$	2	Depend on device type	\times
F8.06	Motor rated power	0.1-999.9KW	0.1	Depend on device type	\times
F8.07	Motor stator resistance	0.000-9.9999ohm	0.001 ohm	Depend on device type	\times
F8.08	Motor rotor resistance	0.000-9.9999ohm	0.001 ohm	Depend on device type	\times
F8.09	Motor stator leakage inductance	0.0-999.9mH	0.1 mH	Depend on device type	\times
F8.10	Motor rotor leakage inductance	$0.0-999.9 \mathrm{mH}$	0.1 mH	Depend on device type	\times
F8.11	Motor mutual inductance	0.0-999.9mH	0.1 mH	Depend on device type	\times
F8.12	Torque limit	50.0-200.0\%(rated current)	0.1\%	150.0\%	\times
F8.13	Speed loop proportion gain	0.000-6.000	0.001	0.700	\times
F8.14	Speed loop integral time constant	0.000-9.999	0.001	0.360	\times
F8.15	Motor stability coefficient	0-4		3	\times
F8.16	Filter time displayed instead freq.	0~999	1	6	\times
F8.17	Motor speed correction factor	0-9999\%	0	100\%	\times

F9-Protection function parameter group

Function code	Name	Set range	Min. unit	Factory default	Modifi -cation
F9.00	Waiting time for starting again when power off	$0.0-20.0$ S (0 means do not enable this function)	0.1 S	0	\times
F9.01	Failure self-renew times	$0-10$ 0 shows no automatic reset function Note:no automatic reset function when over load and over heat.	1	0	\times
F9.02	Failure self-renew interval	$0.5-20.0$ S	0.1 S	5.0 S	\times
F9.03	Motor overload protection mode selection	$0:$ no action $1:$ inverter close off output	1	1	\times
F9.04	Motor overload protection coefficient	$20.0-120.0(\%)$	$0.1(\%)$	$100.0(\%)$	\times

F9.05	Overload warning alarm checkout level	$20-200(\%)$	$1(\%)$	$130(\%)$	\bigcirc
F9.06	Overload warning alarmDelay time	$0.0-20.0 \mathrm{~s}$	0.1 s	5.0 s	\bigcirc
F9.07	Overvoltage stall selection	$0:$ ban $1:$ allow	1	1	\times
F9.08	Overvoltage stall point	$120-150(\%)$	$1(\%)$	$130(\%)$	\bigcirc
F9.09	Automatic current limit level	$110-200(\%)$	$1(\%)$	$150(\%)$	\times
F9.10	Frequency declining rate during current limiting	$0.00-99.99 \mathrm{~Hz} / \mathrm{s}$	$0.01 \mathrm{~Hz} / \mathrm{s}$	$10.00 \mathrm{~Hz} / \mathrm{s}$	\bigcirc
F9.11	Automatic current limiting action selection	$0:$ constant speed ineffective $1:$ constant speed effective remark: Acc/Dec always effective	1	0	\times

Fd—Failure record function parameter group					
Function code	Name	Setting range	Min. unit	Factory default	Modifi -cation
Fd.00	Previous one time failure record	Previous one time failure record	1	0	$*$
Fd.01	Previous two time failure record	Previous two time failure record	1	0	$*$
Fd.02	Previous three time failure record	Previous three time failure record	1	0	$*$
Fd.03	Previous four time failure record	Previous four time failure record	1	0	$*$
Fd.04	Previous five time failure record	Previous five time failure record	1	0	$*$
Fd.05	Previous six time failure record	Previous six time failure record	1	0	$*$
Fd.06	Set freq. of previous failure	Set freq. of previous failure	0.01 Hz	0	$*$
Fd.07	output freq. at previous failure	output freq. of previous failure	0.01 Hz	0	$*$
Fd.08	output current at previous failure	output current of previous failure	0.1 A	0	$*$
Fd.09	output voltage at previous failure	output voltage of previous failure	1 V	0	$*$
Fd.10	DC bus-bar voltage at previous failure	DC bus-bar voltage of previous failure	1 V	0	$*$
Fd.11	Load motor speed at previous failure	Load motor speed of previous failure	$1(\mathrm{r} / \mathrm{m})$	0	$*$
Fd.12	Module temperature at previous failure	Module temperature of previous failure	$1{ }^{\circ} \mathrm{C}$	0	$*$
Fd.13	Input terminal status at previous failure	Input terminal status of previous failure		11111111	$*$
Fd.14	Accumulative run time at previous failure	Accumulative run time of previous failure		0	$*$

FF—Password and manufacturer function parameter group					
Function code	Name	Setting range	Min. unit	Factory default	Modifi -cation
FF.00	User password	$0000-9999$	1	0000	\times
FF.01	Manufacturer password	$0000-9999$	1	0000	\times
FF.02- FF.0X	Manufacturer's special parameter				\times

C—Supervision function parameter group					
Function code	Name	Description	Min. unit	Factory default	Modifi -cation
C-00	Set frequency	Current set frequency	0.01 HZ		
C-01	Output freq.	Current output freq.	0.01 HZ		$*$
C-02	Output current	Virtual value of current output current	0.1 A		$*$
C-03	Output voltage	Virtual value of current output voltage	1 V		$*$
C-04	DC bus-bar voltage	Current DC bus-bar voltage	1 V		$*$
C-05	Load motor speed	Product of output frequency and load motor speed emendation factor	$1(\mathrm{r} / \mathrm{m})$		$*$
C-06	Module temperature	IGBT heat sink temperature	$1 \mathrm{C}^{\circ}$		$*$
C-07	Run time	Inverter electrification run time	1 h		$*$
C-08	accumulative run time	Inverter accumulative run time	1 h		$*$
C-09	Input terminal status	Switch value input terminal status	--		$*$
C-10	output terminal status	Switch value output terminal status	--		$*$
C-11	Analog input VCI	Analog input value of VCI	V		$*$
C-12	Analog input YCI	Analog input value of YCI	V		$*$
C-13	Analog input CCI	Analog input value of CCI	V		$*$
C-14	Exterior pulse input	Exterior pulse input	0.1 KHz		$*$

FA—Stop assistant function parameter group						
Function code	Name	Set range	Mini. unit	Factory setting	Modifi -cation	
FA. 00	Auxiliary DC brake time	$0.0-999.9 \mathrm{~s}$	0.1 s	0.0 s	O	
FA. 01	Auxiliary DC brake voltage	$0-10.0(\%)$	$0.1(\%)$	$0.0(\%)$	(\%)	
FA. 02	Reserved					
FA. 03	Reserved					

(1) input terminal status corresponding relation is as follows:

(2) output terminal status corresponding relation is as follows:

6 Detailed function description

Listed column content for parameter function code description in this chapter is as follows:

Code	Name	Set range or description	Factory default

6.1 Basic run function parameter group: F0

F0.00	Frequency input channel selection	range: 0~11	1

0: keypad analog potentiometer setting. Set running frequency by keypad analog potentiometer.

1: keypad digital setting. Initial set frequency value is F0.01, can change set frequency by changing F0.01 parameter through keypad, and you can also modify F 0.01 by \triangle key.

2: terminal UP/DOWN adjust setting frequency(stored after power off or stop). Initial set frequency value is the value stored during the last power off time, and you can adjust set running frequency by terminal UP/DOWN.

3: serial port provision(not stored after power off). Serial port frequency set initial value is F0.01, change set frequency by setting F0.01 through serial port, after electic off, it need to set the new specified frequency value.

4: VCI analog setting(VCI-GND).Frequency setting determined by VCI terminal analog voltage, input voltage range: $\mathrm{DC} 0 \sim 10 \mathrm{~V}$.

5: CCI analog setting (CCI-GND). Frequency setting determined by CCI terminal analog voltage /current, input range: $\mathrm{DC} 0 \sim 10$ (CCI jumping wire choose V side), DC: $4 \sim 20 \mathrm{~mA}$ (CCI jumping wire choose A side).

6: YCI analog setting (YCI-GND). Frequency setting determined by YCI terminal analog voltage, input range: $\mathrm{DC} 0 \sim 10 \mathrm{~V}$ (YCI jumping wire choose 10 V side)or $\mathrm{DC} 0 \sim 5 \mathrm{~V}$ (YCI jumping wire choose 5 V side).

7: terminal pulse (PULSE) setting. Frequency set by terminal pulse(only input through X 7 or X 8 , see $\mathrm{F} 5.06 \sim \mathrm{~F} 5.07$ definition), input pulse signal spec: voltage range $15 \sim 24 \mathrm{~V}$; frequency range $0 \sim 20.0 \mathrm{KHz}$.

8: combination setting. See function parameter F2.09, set frequency by eachchannel combination setting.

9: terminal UP/DOWN adjust setting frequency(not stored after power off or stop)Initial set frequency value is F0.01, and adjust set running frequency by terminal UP/DOWN.

10:serial port provision(stored after power off): when the inverter is disconnected with electic, it will keep the currently running frequency, and next time it will keep the former frequency running the electric on .

11: terminal PWM pulse width set frequency.

Relation between frequency and input information is determined by function code F7.00~F7.17 when frequency input channel is $4,5,6,7$, please see Section 6.8.
note

F0.01	Freq. digit setting	range: low limit~high limit	$\mathbf{5 0 . 0 0 H z}$

F0.01 parameter is original set frequency of the inverter when frequency setting channel is defined as number setting ($\mathrm{F} 0.00=1,3$).

| F0.02 | Run command channel selection | range: 0~4 | 0 |
| :---: | :---: | :---: | :---: | key on the keypad.

1: terminal run command control (keypad STOP command ineffective). Start and stop the inverter by exterior control terminal FWD, REV, X1~X8 etc..

2: terminal run command control (keypad STOP command effective). Start and stop the inverter by exterior control terminal FWD, REV, X1~X8 etc..

3: serial port run command control (keypad STOP command ineffective). Start and stop the inverter by RS485 interface.

4: serial port run command control (keypad STOP command effective).
Start and stop the inverter by RS485 interface.
The inverter can change run command channel by modifying F0.02 during waiting and running, please confirm that modification is allowed during running on the spot.

F0.03	Run direction setting	Range: 0, 1	100

The $1^{\text {st }}$ bit:
0: forward run
1: reserved
The $2^{\text {nd }}$ bit:
0 : reverse run allowed
1: reverse run banned. The inverter will stop output when there is reverse run command.
The $3^{\text {rd }}$ bit:

REV/JOG key selection

0 : as reverse run key
1: as jog key

[^0]| F0.04 | Acce/Dece mode selection | range: $\mathbf{0 , 1}$ | 0 |
| :--- | :--- | :--- | :--- |

0: linear Acce/Dece mode. Output frequency increases or decreases according to constant slope, just as shown in Fig.6-1.

1: S curve Acce/Dece mode. Output frequency increases or decreases according to S curve, just as shown in Fig.6-2.

Fig.6-1 linear Acce/Dece

Fig.6-2 S curve Acce/Dece

F0.05	S curve starting time	range: $10.0(\%)-\mathbf{5 0 . 0}(\%)$ (Acc/Dec time)F0.05+F0.06 $\leqslant 90(\%)$	$\mathbf{2 0 . 0 (\%)}$
F0.06	S curve rising time	range: $\mathbf{1 0 . 0 (\%) - 7 0 . 0 (\%) (A c c / D e c ~}$ time)F0.05+F0.06 $\leqslant 90(\%)$ s	$\mathbf{6 0 . 0 (\%)}$

F0.05, F0.06 is only effective when S curve Acce/Dece mode(F0.04=1) is selected during Acc/Dec selection, and $\mathbf{F 0 . 0 5}, \mathbf{F 0 . 0 6} \leqslant 90 \%$.

S curve starting time is shown as Fig. 6-2(3), slope of output frequency variation increases by degrees from 0 .
S curve rising time is shown as Fig.6-2(2), slope of output frequency variation is constant.

S curve ending time is shown as Fig.6-2(1), slope of output frequency variation steps down to 0 .
3 S curve Acce/Dece mode, suitable for starting and stopping elevator, deferent belt,
note

F0.07	Acce/Dece time unit	range: $\mathbf{0 , 1}$	$\mathbf{0}$

This function determines Acce/Dece time unit.
0 : second
1: minute
(1) This function is effective for all Acce/Dece process except for jog run.
(2) To choose second as time unit is recommended.

F0.08	Acce time 1	range: $0.1-6000.0$	20.0
F0.09	Dece time 1	range: $0.1-6000.0$	20.0

Accelerating time is defined as time for inverter accelerating from 0 Hz to high limit frequency, see tl in Fig.6-3, Dece time is defined as time for inverter decelerating from high limit frequency to 0 Hz , see t2 in Fig.6-3.

Fig.6-3 Acce/Dece time definition
(1) In EDS1000 series inverter 7 kinds of Acce/Dece time are defined in total, here we only define Acce/Dece time 1, Acc/Dec time 2~7 are defined in F2.18~F2.29, please refer to Section 6.3.
(2) Can choose time unit minute or second for Acce/Dece time 1~7 by F0.07, factory default is second.

F0.10	Upper limit freq.	range: lower limit freq. -400.00 Hz	50.00 Hz
F0.11	lower limit freq.	range: 0.00 -upper limit freq.	0.00 Hz
F0.12	Lower limit freq. run mode	range: 0:run at lower limit freq. 1: stop by slow down 2: Free stop	0

The inverter will decrease output frequency gradually in set decelerating time when actual set frequency is lower than low limit frequency, after reaching low limit frequency, the inverter will run at low limit frequency if low limit frequency running mode set to 0 ; The inverter will reduce output frequency sequentially to zero frequency run if low limit frequency running mode set to 1 ; The inverter will free stop if low limit frequency running mode set to 2 . The inverter will begin to re-start from 0 HZ and accelerate to a given value if given value higher than low limit frequency.

F0.13	Torque boost mode	Range: 0:manual boost 1:automatic boost	0

0: manual boost. Torque boost voltage is determined completely by parameter F0.14, its characteristic is boost voltage fixed, but the motor is prone to magnetic
saturation when lightly loaded.
1: automatic torque boost. Torque boost voltage varies as stator current of the motor changes, bigger stator current corresponds to bigger boost voltage.

$$
\text { Boost volt. }=\frac{\text { F0.14 }}{100} \times \text { motor rated volt. } \times \frac{\text { inverter output current }}{2 \times \text { inverter rated current }}
$$

F0.14	Torque boost	Range: $\mathbf{0 . 0} \mathbf{- 1 2 . 0}(\%)$	$\mathbf{2 . 0}(\%)$

To improve inverter's low frequency torque characteristic, can carry on boost compensation for output voltage, degressive torque curve and constant torque curve torque boost are separately shown as Fig.6-4a, b.

(a)degressive torque curve torque boost graph Fig.6-4 torque boost graph
(1) Improper setting to this parameter can cause motor heating or over current protection.
(2) Advise the user to adopt manual torque boost and to adjust V / F curve according to motor parameter and usage occasion when driving synchronous motor.

F0.15	V/F curve setting	range: $0 \sim 4$	0

This function code defines EDS1000 flexible V/F setting mode to satisfy different load characteristic. Can choose 4 kinds of fixed curve and one custom curve according to definition of F0.15.

If $\mathrm{F} 0.15=0, \mathrm{~V} / \mathrm{F}$ curve bears constant torque curve characteristic; as curve 0 in Fig.6-5a.

If F0.15=1, V/F curve bears 2.0 order power degressive torque characteristic; as curve 3 in Fig.6-5a .

If $\mathrm{F} 0.15=2, \mathrm{~V} / \mathrm{F}$ curve bears 1.7 order power degressive torque characteristic; as curve 2 in Fig.6-5a .

If $\mathrm{F} 0.15=3, \mathrm{~V} / \mathrm{F}$ curve bears 1.2 order power degressive torque characteristic; as curve 1 in Fig.6-5a .

The user can choose $1,2,3 \mathrm{~V} / \mathrm{F}$ curve run mode according to load
characteristic to reach better energy save result while the inverter is driving degressive torque load such as blower and water pump etc..

If F0.15=4, you can set V/F curve yourself by setting F2.37-F2.44 parameters.

As shown in Fig.6-5b, by setting three inflexion point (V1,F1), (V2,F2), (V3,F3), you can define V/F curve arbitrarily to apply to special load.

Fig.6-5a V/F curve

F0.16	G/P type setting	range: 0,1	0

0: G type
1: P type

6.2 Start, stop, braking function parameter group: F1

F1.00	Start run mode	range: $\mathbf{0 , 1 , 2}$	0

0: start from starting frequency. The inverter start according to F1.01 starting frequency and F1.02 starting frequency holding time.

1: first brake then start from starting freq. First brake according to DC braking voltage and time (F1.03, F1.04), then start at starting frequency.

2: Start after inspecting speed.
(1) Start-up mode 0: Advise the user to adopt start-up mode 0 in common application occasion and when driving synchronous motor.
(2) Start-up mode 1: Be applicable to small inertia load with forward run or reverse run phenomena when the motor doesn't drive any device, for big inertia load, advise not to adopt start-up mode 1.
(3) Start up mode2: Be application for big inertia load haven't firm stopped start, usually cooperate with restart after power lost, fault recovery function and so on. Please notice the following two points before use the start.
A. Wait few seconds to restart after inverter free stop. If turn out over current fault in start process, please extend restart time.
B. Don't revise frequency in speed check process, otherwise it will alarm.

F1.01	Starting frequency	range: $\mathbf{0 . 0}-\mathbf{1 0 . 0 0 H z}$	$\mathbf{0 . 0 0 H z}$
F1.02	Starting freq. duration time	range: $\mathbf{0 . 0}-\mathbf{2 0 . 0 S}$	$\mathbf{0 . 0 S}$

Starting frequency means initial frequency at which the inverter start up, as fs shown in Fig.6-6; Starting freq. holding time means consecutive run time during which the inverter run at starting frequency, as t_{1} shown in Fig.6-6.

Fig.6-6 starting freq. and starting time
Starting frequency is not limited by low limit frequency.
note

F1.03	DC braking volt. when starting	range: $0-15(\%)$	$0(\%)$
F1.04	DC braking time when starting	range: $0.0-20.0 S$	$0.0 S$

When $\mathrm{F} 1.00=1$, F 1.03 , F1.04 is effective, as shown in Fig.6-7.
F1.03 is percentage relative to inverter rated input voltage. Have no DC braking process when starting DC braking time is 0.0 .

Fig.6-7 starting mode 1
Fig.6-8 Dece stop+DC braking

F1.05	Stop mode	Range: 0, 1, 2	0

0: Dece stop. The inverter reduces output frequency gradually according to set Dece time upon receival of stop command and stops running after frequency is reduced to 0 .

1: free stop. The inverter stop outputting at once when receiving stop command and the load stops freely according to mechanical inertia.

2: Dec plus DC braking stop. The inverter reduces output frequency gradually according to set Dece time upon receival of stop command and start DC braking when F1.06 stop braking initiative frequency is reached.

F1.06	DC braking initiative frequency when stop	range: $0.0-15.00 \mathrm{~Hz}$	$\mathbf{3 . 0 0 H z}$
F1.07	DC braking time when stop	range: $0.0-20.0 S$	$0.0 S$
F1.08	DC braking voltage when stop	range: $0-15(\%)$	0

F1.08 is percentage relative to inverter rated input voltage. Have no DC braking process if stop braking time is 0.0s, as shown in Fig.6-8.

6.3 Auxiliary run function parameter group: F2

F2.00	Analog filter time constant	range: $0.00-30.00 \mathrm{~S}$	0.20 S

The time constant used when the inverter filter sampled value when frequency is set by exterior analog channel. Can improve the situation by increasing this filtering time constant if connecting wire is long or disturbance is serious which cause unstable set frequency.

Analog filtering time constant must be bigger than F3.11(sampling cycle), otherwise the system would run unsteadily.

F2.01	FWD REV run dead-section time	range: $0.0-3600.0 S$	$0.1 S$

During process of transiting from forward run to reverse run or from reverse run to forward run, transition time during which the inverter wait at zero output frequency, as t_{1} shown in Fig.6-9.

Fig.6-9 FWD REV run dead-section time
F2.02
Automatic energy save run \quad range: 0,1
0

To reach better energy save result, the inverter would detect load current to get the purpose of automatic energy save.

0 : no action

1: action

Empty or lightly loaded motor can get the purpose of energy save by detecting load current to adjust output voltage properly. Automatic energy save run is mainly applied to occasion of stable load, speed.

This function commonly applied to load such as blower and water pump etc. note

F2.03	AVR function	range: $0,1,2$	0

AVR namely automatic voltage adjusting function. Indicate that the inverter can output constant voltage by AVR function when the inverter input voltage fluctuates.

0: no action
 1: action all the time
 2: no action only during Dece

(1) when input voltage is higher than rated value, under normal situation should set F2.03 $=1$. When F1.05=0 namely inverter in decelerating stop, motor Dec time is short and running current would be bigger. But the motor decrease speed placidly with small run current and long Dec time if choose AVR action all the time.
(2) should set F2.03 $=0$, namely AVR function ineffective when the motor system oscillates which caused by choosing AVR function.

F2.04	Slip freq. compensation	range:0 150%	0

This function can adjust output frequency properly as the load varies to compensate slip frequency of the asynchronous motor dynamically, so that control motor speed in constant value. If act with automatic torque boost function, can get better low speed moment characteristic. As shown in Fig.6-10.

Fig.6-10 slip freq. compensation graph

F2.05	Carrier wave freq.	range: $2-15.0 \mathrm{~K}$	Depend on device type

Carrier frequency mainly affects motor noise and heat consumption during running. Relation between carrier frequency and motor noise, current leakage, disturbance is as follows:

Carrier frequency increase (\uparrow), motor noise decrease (\downarrow), motor current leakage increase (\uparrow), disturbance to environment increase(\uparrow);

Carrier frequency decrease (\downarrow), motor noise increase (\uparrow), motor current leakage decrease (\downarrow), disturbance to environment decrease (\downarrow) 。

Should decrease carrier frequency properly to reduce heat consumption of the inverter when ambient temperature is high and motor load is heavy. Relation of EDS1000 each type and carrier frequency is as shown in Table 6-1.

Table 6-1 Relation table of device type and carrier frequency

device type \quad carrier freq.	Max.carrier freq. (KHz)	Min. carrier freq (KHz)	factory default (KHz)
0.4 KW	15	2.0	2
0.75 KW	14	2.0	2
1.5 KW	13	2.0	2
2.2 KW	12	2.0	2
3.7 KW	12	2.0	2
5.5 KW	11	2.0	2
7.5 KW	10	2.0	2
11 KW	11.0	0.7	2
15 KW	10.0	0.7	2
18.5 KW	9.0	0.7	2
22 KW	8.0	0.7	2
30 KW	7.5	0.7	2
37 KW	7.0	0.7	2
45 KW	6.0	0.7	2
55 KW	5.5	0.7	2

(1) To get better control characteristic, suggest that the ratio of carrier frequency to inverter max. run frequency be not smaller than 36 .
note (2) Error exists in current displayed value when carrier frequency is small.

F2.06	Jog run frequency	range: $0.10-50.00 \mathrm{~Hz}$	5.00 Hz
F2.07	Jog Acce time	range: $0.1-60.0 S$	$20.0 S$
F2.08	Jog Dece time	range: $0.1-60.0 \mathrm{~S}$	20.0 S

Jog frequency has the highest priority. Under any status, the inverter would transit to run at jog frequency at once according to set jog accelerating, decelerating time as long as jog command is inputted, as shown in Fig.6-11.

Jog accelerating time means time during which the inverter accelerate from 0 Hz to high limit frequency, Jog Dec time means time during which the inverter decelerate from high limit frequency to 0 Hz .

Fig.6-11 jog run
(1) Keypad, control terminal and serial port can do jog control all.
(2) The inverter will stop according to Dec stop mode after jog run command is withdrawn.

F2.09	Freq. input channel combination	range: $0 \sim \mathbf{2 8}$	$\mathbf{0}$

0: $\mathrm{VCI}+\mathrm{CCI}$
1: VCI-CCI
2: YCI $+\mathbf{C C I}$
YCI specified frequency is positive or negative. Here YCI input $0 \sim+10 \mathrm{~V}$ corresponds to frequency $-50.00 \mathrm{~Hz} \sim+50.00 \mathrm{~Hz}, 0 \sim 5 \mathrm{~V}$ corresponds to frequency $-50.00 \sim 0 \mathrm{~Hz}, \quad 5 \sim 10 \mathrm{~V}$ corresponds to $0 \sim+50.00 \mathrm{~Hz}$.

3: RS485+YCI

When you choose RS485+YCI, YCI input voltage $0 \sim 5 \mathrm{~V}-\mathrm{YCI}$ dead band (F7.12) corresponds to $-50.00 \mathrm{~Hz}-0.00 \mathrm{~Hz}, 5 \mathrm{~V}-\mathrm{YCI}$ dead band $(\mathrm{F} 7.12) \leqslant \mathrm{YCI} \leqslant$ $5 \mathrm{~V}+\mathrm{YCI}$ dead band (F7.12) corresponds to $0 \mathrm{~Hz}, \mathrm{YCI}>5 \mathrm{~V}+\mathrm{YCI}$ dead band (F7.12) corresponds to $0.00 \sim+50.00 \mathrm{~Hz}$. You can carry out tension control by this function.

4: VCI+YCI

5: reserved
6: external pulse provision $+\mathbf{C C I}$
7: external pulse provision-CCI
8: reserved
9: reserved
10: reserved
11: reserved
12: reserved

13: VCI, CCI any nonzero value effective, VCI preferred
14: reserved
15: RS485+CCI
16: RS485-CCI
17: RS485+VCI
18: RS485-VCI
19: RS485+keypad analog potentiometer
20: RS485- keypad analog potentiometer
21: VCI+ keypad analog potentiometer
22: VCI- keypad analog potentiometer
23: CCI + keypad analog potentiometer
24: CCI- keypad analog potentiometer
25: reserved
26: reserved
27: reserved
28: reserved

F2.10	main\&sub inverter communication freq. provision proportion	range: $0-500(\%)$	$\mathbf{1 0 0 (\%)}$

Main\&sub inverter communication freq. provision proportion, this parameter need to be set in sub inverter but not need in main inverter.

F2.11	LED display control 1	range: 0000-1111	0000

F2.11 make use of 4 bits of the parameter to set if $\mathrm{C}-07-\mathrm{C}-10$ is displayed in parameter, thereinto 0 indicates not displayed, 1 indicates displayed. Set parameter of 4 bit is as following figure:

Remark: accu. is abbreviation of accumulative.

F2.12	LED display control 2	range: 0000-1111	1111

F2.12 make use of 4 bit of the parameter to set if C-11-C-14 is displayed in parameter, thereinto 0 indicates not displayed, 1 indicates displayed. Set parameter of 4 bit is as following figure:

F2.13	Parameter operation control	$\begin{array}{r} \text { range: LED 1 }{ }^{\text {st }} \text { bit: } 0 \sim 2 \\ \text { LED 2 }{ }^{\text {nd }} \text { bit: } 0 \sim 2 \\ \text { LED 3 }{ }^{\text {rd }} \text { bit: } 0 \sim 4 \\ \hline \end{array}$	0

LED $1^{\text {st }}$ bit
0: all parameter allowed to be modified
1: except this parameter, all other parameter not allowed to be changed
2: except F0.01 and this parameter, all other parameter not allowed to be changed
LED $2^{\text {nd }}$ bit
0: no action
1: renew factory default
2: clear history failure record
LED $3^{\text {rd }}$ bit
0: not locked
1: all buttons locked except STOP key
2: all buttons locked except \triangle, STOP key
3: all buttons locked except RUN, STOP key
4: all buttons locked except SHIFT, STOP key
(1) Factory default of this function parameter is 0 , i.e., all the function parameter can be modified. After modifying the parameter, please first set this function code to 0 if you want to modify function code setting. After modifying the parameter you can change this function code setting to expected protection grade if parameter protection is needed.
(2) After clearing memory information or renewing manufacturer parameter, the 1 st bit of this function code will resume 0 automatically.
(3) After the 3rd bit of F2.13 is setted, the keypad will be locked after you press ESC for 5 seconds, and then corresponding keys is locked. Please press ESC for 5 seconds again for unlocking the keypad.

F2.14 communication configuration

range: LED $1^{\text {st }}$ bit: 0~5
LED 2 ${ }^{\text {nd }}$ bit: $0,1,2$
F2.14 make use of $1^{\text {st }}$ bit, $2^{\text {nd }}$ bit to set baud rate and data format of serial communication, thereinto LED $1^{\text {st }}$ bit represents communication baud rate, set value as follows:

0: 1200BPS
1: 2400BPS
2: 4800BPS
3: 9600BPS
4: 19200BPS
5: 38400BPS
LED $2^{\text {nd }}$ bit: represents data format, set value as follows:
0: 1-8-1 format, no checkout. Namely: 1 bit for starting, 8 bits for data, 1 bit for stop, no checkout.

1: 1-8-1 format, even checkout. Namely: 1 bit for starting, 8 bits for data, 1 bit for stop, even checkout.

2: 1-8-1 format, odd checkout. Namely: 1 bit for starting, 8 bits for data, 1 bit for stop, odd checkout.

F2.15	Local address	range: $0-127,127$ is broadcast address	1

This function code is used to identify address of this inverter during serial port communication. 127 is for main inverter during main and sub device communication between inverters.

A127 is broadcast address, can only receive and execute broadcast command from upper machine but not respond to upper machine when 127 is set to broadcast address.

F2.16	Communication overtime checkout time	range: $0.0-1000.0 \mathrm{~S}$	0.0 S

When serial port communication fails and its continuous time exceed set value of this function code, the inverter judge it as communication failure.
The inverter would not detect serial port communication signal, namely this function ineffective when set value is 0 .

F2.17	Local response delay time	range: $0-200 \mathrm{~ms}$	5 ms

Local response delay time represents the time within which the inverter serial port receive and execute command from upper device and then respond to upper device, this function is just used for setting this delay time.

F2.18	Acce time 2	range: $0.1-6000.0$	20.0
F2.19	Dece time 2	range: $0.1-6000.0$	20.0
F2.20	Acce time 3	range: $0.1-6000.0$	20.0
F2.21	Dece time 3	range: $0.1-6000.0$	20.0
F2.22	Acce time 4	range: $0.1-6000.0$	20.0
F2.23	Dece time 4	range: $0.1-6000.0$	20.0
F2.24	Acce time 5	range: $0.1-6000.0$	20.0
F2.25	Dece time 5	range: $0.1-6000.0$	20.0
F2.26	Acce time 6	range: $\mathbf{0 . 1}-6000.0$	20.0
F2.27	Dece time 6	range: $\mathbf{0 . 1 - 6 0 0 0 . 0}$	20.0
F2.28	Acce time 7	range: $\mathbf{0 . 1 - 6 0 0 0 . 0}$	20.0
F2.29	Dece time 7	range: $\mathbf{0 . 1 - 6 0 0 0 . 0}$	20.0

Can define 3 kinds of accelerating decelerating time and can choose accelerating decelerating time $1 \sim 7$ during inverter run process by different combination of control terminal, please see definition for function of accelerating decelerating time terminal in F5.00~F5.07.

Accelerating decelerating time 1 is defined in F 0.08 and F 0.09 .
note

F2.30	Multi-step freq. 1	range: low limit - high limit	5.00 Hz
F2.31	Multi-step freq. 2	range: low limit - high limit	10.00 Hz
F2.32	Multi-step freq. 3	range: low limit - high limit	20.00 Hz
F2.33	Multi-step freq. 4	range: low limit - high limit	30.00 Hz
F2.34	Multi-step freq. 5	range: low limit - high limit	40.00 Hz
F2.35	Multi-step freq. 6	range: low limit -high limit	45.00 Hz
F2.36	Multi-step freq. 7	range: low limit - high limit	50.00 Hz

These set frequency will be used in multi-step speed run mode and simple PLC run mode, please refer to multi-step speed run terminal function of F5.00 \sim F5.07 and F4 group simple PLC function.

F2.37	VF frequency value 0	$0.00-\mathrm{F} 2.39$	$\mathbf{1 0 . 0 0 \mathrm { Hz }}$
F2.38	VF voltage value 0	$0.00-\mathrm{F} 2.40$	20.00%
F2.39	VF frequency value 1	F2.37-F2.41	20.00 Hz
F2.40	VF voltage value 1	F2.38-F2.42	40.00%
F2.41	VF frequency value 2	F2.39-F2.43	25.00 Hz
F2.42	VF voltage value 2	F2.40-F2.44	$\mathbf{5 0 . 0 0 \%}$
F2.43	VF frequency value 3	F2.41-high limit frquency	40.00 Hz
F2.44	VF voltage value 3	F2.42-100.0\% (rated voltage)	$\mathbf{8 0 . 0 0 \%}$

See decription for F0.15.

F2.45	Jumping freq. 1	range: $0.00-400.00 \mathrm{~Hz}$	0.00 Hz
F2.46	Jumping freq. 1 range	range: $0.00-30.00 \mathrm{~Hz}$	0.00 Hz
F2.47	Jumping freq. 2	range: $0.00-400.00 \mathrm{~Hz}$	0.00 Hz
F2.48	Jumping freq. 2 range	range: $0.00-30.00 \mathrm{~Hz}$	0.00 Hz
F2.49	Jumping freq. 3	range: $0.00-400.00 \mathrm{~Hz}$	0.00 Hz
F2.50	Jumping freq. 3 range	range: $0.00-30.00 \mathrm{~Hz}$	0.00 Hz

F2.45~F2.50 function is set for keeping inverter output frequency away from resonance frequency of mechanical load.
Inverter set frequency can jump around some frequency point according to mode shown in Fig. 6-12, at most 3 jumping range can be defined.

Fig.6-12 jumping frequency and range graph

F2.51	Set run time	range: $0-65535 \mathrm{~h}$	0
F2.52	Run time accumulation	range: $0-65535 \mathrm{~h}$	0

After run accumulative time reach set run time (F2.51), the inverter will output indicator signal, please refer to $\mathrm{F} 5.10 \sim$ F5.13 function introduction. F2.52 denotes accumulative run time of the inverter from leaving factory tonow.

F2.53	RS485/232 communication frame format selection	range: 0-4	0

0: a frame of 14 bytes or 18 bytes ASCII
1: a frame of $\mathbf{8}$ bytes or 10 bytes hex, primary response not changed
2: a frame of $\mathbf{8}$ bytes or $\mathbf{1 0}$ bytes hex, 12 command has no response
3: a frame of 8 bytes or 10 bytes hex, 14 command has no response
4: a frame of $\mathbf{8}$ bytes or 10 bytes hex, both 12 and 14 command have no Response

6.4 Closed-loop run function parameter group: F3

Analog feedback control system:
Input pressure specified value through VCI port, send $4 \sim 20 \mathrm{~mA}$ feedback value of pressure sensor to inverter CCI input port, make up of analog closed-loop control system by built-in PID adjustor, as shown in Fig.6-13.

Fig.6-13 built-in PID analog feedback control system graph

Specified value can also be provided with option by F0.00 function code. note

EDS1000 built-in PID adjustor make up of control system and its work principle chart is as follows:

Fig.6-14 PID control principle diagram
In above diagram Kp: proportion gain; Ki: integral gain; Kd: differential gain
In above Fig.6-14 ,definition of closed-loop specified value, feedback value, error limit and proportion integral differential parameter is same as that of common PID adjustor parameter, see respectively (F3.01~F3.12) definition, relation of specified value and expected feedback value is as shown in Fig.6-15. Thereinto specified value take 10 V as reference and feedback take 20 mA as reference.

Specified value adjusting and feedback value adjusting in Fig.6-14 is for confirming corresponding relation and unitive dimension between specified value and feedback value.

Fig.6-15 specified value and expected feedback value
When the system is determined, basic steps for setting closed-loop parameter are as follows:
(1) determine closed-loop provision and feedback channel(F3.01, F3.02)
(2) need to set relation between closed-loop provision and feedback for analog closed-loop (F3.04~F3.07)
(3) set closed-loop presetting frequency function (F3.14, F3.15)
(4) set closed-loop proportion gain, integral gain, differential gain, sampling
cycle, error limit (F3.08~F3.12)

F3.00	Closed-loop run control selection	range: $0,1,2$	0

0 : closed-loop run control ineffective
1: PID closed-loop run control effective
2: constant pressure water supply PID control effective
This parameter is mainly used for implementing one-driving-two water supply function. If need one driving three or one driving four, please choose a dedicated water supply substrates to achiveve.

Besides setting F3 group of related closed loop running parameters, F5.10-F5.13
(OC1-OC4) must be set to 21 .

F3.01	provision channel selection	range: 0~3	1

0: digital provision.
1: VCI analog $0-10 \mathrm{~V}$ voltage provision
2: CCI analog provision. Can choose $0 \sim 10 \mathrm{~V}$ voltage or $4 \sim 20 \mathrm{~mA}$ current provision
3: keypad analog potentiometer provision

F3.02	Feedback channel selection	range: 0~6	1

0: VCI analog input voltage $0-10 \mathrm{~V}$
1: CCI analog input
2: VCI+CCI
3: VCI-CCI
4: $\operatorname{Min}\{\mathrm{VCI}, \mathrm{CCI}\}$
5: Max \{ VCI, CCI \}
When CCI analog input is selected to be current input, it will be converted to voltage value in the inverter.

6: pulse feedback

	Specified value digital setting	range: $0.00-9.999 \mathrm{~V}$	1.000 V
	Target pressure value setting	Range:0.00-F3.21Mpa	1.000(Mpa)

When $\mathrm{F} 3.00=1$, figure given value F 3.03 will be as specified value of closed-loop control system directly. At this time please setF3.21to 9.999(v);

When F3.00=2, Start PID control constant pressure water supply, At this point the water supply system F3.03 will become the target pressure value. Upper limit is F 3.21 Mpa .

F3.04	min. specified value	range: $0.0-$ max. specified value	$0.0(\%)$
F3.05	corresponding feedback value of min. specified value	range: $\mathbf{0 . 0 - 1 0 0 . 0 (\%)}$	$\mathbf{0 . 0}(\%)$
F3.06	max. specified value value	range: min. specified value $-100.0(\%)$	$\mathbf{1 0 0 . 0 (\%)}$
F3.07	corresponding feedback value of max. specified value	range: $\mathbf{0 . 0 \% - 1 0 0 . 0 (\%)}$	$\mathbf{1 0 0 . 0 (\%)}$

F3.04~F3.07 define relation curve of analog closed-loop provision and expected feedback. Their set value is percentage of provision and feedback actual value relative to reference $(10 \mathrm{~V}$ or 20 mA$)$.
corresponding feedback value of max. specified value
corresponding feedback value of min. specified value
corresponding feedback value of min. specified value corresponding feedback value of max. specified value

Fig.6-16 provision, feedback curve

F3.08	Proportion gain Kp	range: $0.000-9.999$	0.050
F3.09	Integral gain Ki	range: $0.000-9.999$	$0.050 S$
F3.10	Differential gain Kd	range: $0.000-9.999$	0.000
F3.11	Sampling cycle T	range: $0.01-1.00 S$	$0.10 S$

The more big Kp proportion gain is, the more quick the response is, but overbig is prone to bringing surge.

Only applying proportion gain Kp adjustment can't eliminate offset completely, can apply integral gain Ki and differential gain to make up of PID control in order to eliminate residual offset. The bigger Ki is, the more quickly the system responds to changing offset, but overbig is prone to bringing surge.

Sampling cycle T is sampling cycle for feedback value, during each sampling cycle PID adjustor calculate for one time, the longer the sampling cycle is, the slower the system responds.

F3.12	Deviation limit	range: $\mathbf{0 . 0} \mathbf{- 2 0 . 0}(\%)$	$\mathbf{2 . 0 (\%)}$

For Max. offset of closed-loop specified value, as shown in Fig.6-17, PID adjustor stops adjusting when feedback value is within this range. To utilize this function reasonably redound to harmonizing the conflict between system output precision and stabilization.

Fig.6-17 offset limit

Fig.6-18 closed-loop preset freq.

F3.13	Integral separation PID adjusting threshold	range: $0.0-100.0 \%$	100.0

PID integral separation, integral don't react when specified value and feedback value are bigger than this limit, only when specified value and feedback value are smaller than or equal to this limit, integral react. Can adjust system response speed by adjusting this parameter.

F3.14	Closed-loop preset frequency	range: 0-high limit freq.	0.00 Hz
F3.15	Closed-loop preset frequency holding time	range: 0.0-6000S	0.0 S

This function can make closed-loop adjusting enter into stable phase quickly. After closed-loop run starts, the inverter first accelerates to preset frequency F3.14 in terms of accelerating time, and after running at this frequency for a period of time F3.15, it runs according to closed-loop characteristic. As shown in Fig.6-18.

Set preset freq. and holding time to " 0 ' if closed-loop preset freq. function is not needed. note

F3.16	Sleep frequency threshold	range: $0.00-400.00 \mathrm{~Hz}$	$\mathbf{3 0 . 0 0 H z}$
F3.17	Wake pressure threshold	range: $0.00-F 3.21 \mathrm{Mpa}$	0.500 Mpa

The function of sleep frequency threshold: When the system water pressure in
the scope of F3.12 (deviation limit), and the inverter operating frequency is under the F3.16 (sleep frequency), after the F3.18 (sleep delay time), the inverter will enter a sleep state, operating frequency will drop to 0.00 HZ in order to save energy conservation and protect motor.

Wake function: When the system is in sleep mode, When the water feedback pressure is less than F3.17 (wake pressure). At this time the inverter had passed F3.19(Delayed recovery time), Sleep out.

F3.18	Sleep delay time	range: $0.0-6000.0 \mathrm{~S}$	0.0

This parameter is to set delay time when entering into sleep function. Inverter will enter the delay time of sleep state. When the system pressure at this delay time does not meet the conditions of sleep, System does not enter the sleepin mode.

F3.19	Revival delay time	range: $0.0-6000.0 \mathrm{~S}$	0.0

System in sleep mode, if the feedback pressure of system less than F3. 17 wake pressure threshold value, the system will out of sleep after this delay time.

F3.20	Constant pressure water supply mode 1	range: $0 \sim 3$	0

0 : inverter works in one-drive-two water supply mode
1: constant pressure water supply board acts in one-drive-two mode
2: constant pressure water supply board acts in one-drive-three mode
3: constant pressure water supply board acts in one-drive-four mode

F3.21	Long-distance manometer range	range: $0.001 \mathbf{- 9 . 9 9 9}$	$\mathbf{1 . 0 0 0}$

To set this parameter correspondingly to 10 V or 20 mA .

F3.22	Allowed offset to high limit and lower limit Freq. when add or reduce pumps	range: $\mathbf{0 . 0}-\mathbf{1 0 0 . 0 \%}$	$\mathbf{1 . 0}$

By this parameter, we defines that the inverter begins to add or reduce pumps when output frequency falls in offset range of high limit frequency or lower limit frequency. The inverter begins to add or reduce pumps at high limit frequency or lower limit frequency if this parameter is set to be 0.0%.

F3.23	Pump switchover judging time	range: $0.0-999.9 \mathrm{~S}$	$\mathbf{5 . 0}$

This parameter defines the judging time from output frequency up to high limit to adding pump and the same from ouput frequency up to lower limit to reducing pump.

F3.24	Magnetic control conductor switchover delay time	range: $0.1-10.0 \mathrm{~S}$	0.5

This parameter defines the action delay time of magnetic control conductor when it's from power source to variable frequency or from variable frequency to power source.

F3.25	Automatic switchover interval	range: 0000-9999	$\mathbf{0 0 0 0}$

By setting this parameter, can achieve the function of rust-proof die of the motor, the inverter can delay time by it and then automatically smart switch run pumps and static pump.
When setting value is 0000 minutes, the automatic switching is invalid; when setting value is 0001 ,the system will automatically switch one time in each restarted time. when work it would't switch: when setting value is above 0002 ,the system will automatically switch by setting value.

F3.26	Water supply supervision Para. display	range: $\mathbf{0 , 1}$	0

0 : $\mathrm{C}-11, \mathrm{C}-12$ display voltage value of $\mathrm{VCI}, \mathrm{CCI}$.
1: $\mathrm{C}-11, \mathrm{C}-12$ display PID specified pressure and feedback pressure.

F3.27	Closed-loop adjusting characteristic	range: $\mathbf{0 , 1}$	$\mathbf{0}$

0: Forward function. motor speed increases as specified value increases.
1: Reverse function. motor speed decreases as specified value increases.

F3.28	LED initial supervision Para. selection	range: 0~14	1

This parameter defines initial supervision parameter selection during running or stop. For example F3.28=3, LED displays output voltage initially, please press SHIFT key if you want to see about other supervision parameter.

0: set frequency: Standby mode display set the frequency, output frequency is displayed after running.
1: output frequency: Display output frequency not only standby but also running .

2: output current

3: output voltage
4: DC bus bar voltage
5: motor speed
6: heat sink temperature
7: run time
8: accumulative run time
9: input terminal status
10: output terminal status
11: analog input VCI/PID provision

12: analog input CCI/PID feedback

13: analog input YCI
14: exterior pulse input

F3.29	YCI run-in delay time	range: $0.0-999.9 \mathrm{~s}$	10.0

The inverter first run at RS485 set frequency after start-up and change set frequency to RS485+YCI after delay time passed.

F3.30	Failure relay TA, TB, TC function selection	range: 0~24	$\mathbf{1 5}$

Same as detailed description for F5.10.

F3.31
 Reserved

6.5 Simple PLC function parameter group:F4

The user can set by himself the output frequency direction and running time of the inverter during a running cycle by simple PLC function according to spot craft demand, as shown in Fig.6-19.

EDS1000 serial inverter simple PLC run function provide 7 kinds ofmulti-step speed run mode, see below an example of 7 step speed. In Fig.6-20, a1~a5, d1~d5 is accelerating or decelerating time of relative step, set by accelerating decelerating time parameter F0.08, F0.09 and F2.18~F2.29 in total 7 kinds of parameter, $\mathrm{fl} \sim \mathrm{f} 7, \mathrm{~T} 1 \sim \mathrm{~T} 7$ indicating set frequency and run time set by function code F4.01~F4.14.

Fig.6-19 simple PLC run
EDS1000 series inverter simple PLC run function can provide 7 kinds of multi-speed operation mode, take the fowling 7speed for example Figure 6-20, $\mathrm{a} 1 \sim \mathrm{a} 5, \mathrm{~d} 1 \sim \mathrm{~d} 5$ Is the speed up time and the deceleration time of the stage, they are
setted by the acceleration time parameters F 0.08,F0.09and F2.18~F2.29, a total of seven kinds of parameters, the run frequency and run time of f1~ f7, T1~ T7 are setted by function code F4.01~f4.14.

RUN command \qquad
Fig.6-20 stop after PLC single circle
PLC step finishing and circle finishing indication can be realized by outputting 500 mS pulse indicator signal through open circuit collector terminal $\mathrm{OC} 1 \sim \mathrm{OC} 4$, detailed function defined by F5.10~F5.13.

F4.00	Simple PLC running setting	range: LED 1 0, LED $^{\text {st }}$ bit: 0~3 LED 2 ${ }^{\text {rd }}$ bit $\mathbf{~} \mathbf{0 , 1}$ bit:	$\mathbf{0 0 0}$

This function code make use of its 1 st bit, 2nd bit, 3rd bit to set PLC run mode, PLC rerun mode after interruption, set run time unit, detail as follows:

LED $1^{\text {st }}$:
0: no action. PLC run mode ineffective.
1: stop after single circulation. As shown in Fig.6-20, the inverter stops automatically after finishing a circle, can only start when another run command is available.

2: keep final value after single circulation. As shown in Fig.6-21, the inverter keep running according to frequency, direction of final step after finishing a circle, the inverter won't stop according to set decelerating time until the stop command is available.

Fig.6-21 holding mode after PLC single circle

Fig.6-22 PLC consecutive circle mode
3: consecutive circulation. As shown in Fig.6-22, the inverter start next circle automatically after finishing a circle, until there is stop command.

LED $2^{\text {nd }}$ bit:
0: start from first step. Stop during running caused by stop command, failure or power off, after restarting the inverter will run from first step.

1: continue to run from step frequency of interruption moment. When stop during running caused by stop command or failure, the inverter will record current step used time automatically and enter into this step automatically after restarting, continue to run for residual time according to defined frequency of this step, as shown in Fig.6-23. The inverter will rerun from first step after restarting if power off.

Fig.6-23 PLC starting mode 1
LED $3^{\text {rd }}$ bit : PLC run time unit
0 : second; 1: minute
This unit is only effective to PLC run step time, for accelerating decelerating time of PLC run period, their unit selection is determined by F0.07.
(1) If run time of PLC segment is set to 0 , this segment is ineffective.
(2) can make PLC process a pause, ineffective, work etc. through terminal, for detail please refer to terminal correlative function parameter group F5.

F4.01	Section 1 setting	range: $000-621$	000
F4.02	Section 1 runtime	range: $0-6000.0$	10.0
F4.03	Section 2 setting	range: $000-621$	000
F4.04	Section 2 runtime	range: $0-6000.0$	10.0
F4.05	Section 3 setting	range: $000-621$	000
F4.06	Section 3 runtime	range: $0-6000.0$	10.0
F4.07	Section 4 setting	range: $000-621$	000
F4.08	Section 4 runtime	range: $0-6000.0$	10.0
F4.09	Section 5 setting	range: $000-621$	000
F4.10	Section 5 runtime	range: $0-6000.0$	10.0
F4.11	Section 6 setting	range: $000-621$	000
F4.12	Section 6 runtime	range: $0-6000.0$	10.0
F4.13	Section 7 setting	range: $000-621$	000
F4.14	Section 7 runtime	range: $0-6000.0$	10.0

F4.01~F4.14 utilize LED 1st bit, 2nd bit, 3rd bit to separately define frequency setting, direction and accelerating decelerating time of PLC Run, see following for detail:

LED1 ${ }^{\text {st }}$ bit: frequency setting
0: multi-step frequency $\mathbf{i} \quad \mathrm{i}=1 \sim 7$ is defined by F2.30~F2.44.
1: frequency is determined by function code F 0.00
LED $2^{\text {nd }}$ bit: run direction selection
0 : forward run
1: reverse run
2: determined by run command (FWD,REV)
LED $3^{\text {rd }}$ bit: accelerating decelerating time selection
0 : accelerating decelerating time 1
1 : accelerating decelerating time 2
2: accelerating decelerating time 3
3: accelerating decelerating time 4
4: accelerating decelerating time 5
5: accelerating decelerating time 6
6: accelerating decelerating time 7

6.6 Terminal correlative function parameter group: F5

F5.00	Input terminal X1 function selection	range: 0~42	0
F5.01	Input terminal X2 function selection	range: 0~42	0
F5.02	Input terminal X3 function selection	range: 0~42	0
F5.03	Input terminal X4 function selection	range: 0~42	0
F5.04	Input terminal X5 function selection	range: 0~42	0
F5.05	Input terminal X6 function selection	range: 0~42	$\mathbf{0}$
F5.06	Input terminal X7 function selection	range: 0~42	0
F5.07	Input terminal X8 function selection	range: 0~42	0

Multi-function input terminal X1~X8 provides 43 kinds of selection mode for the user, can choose based on spot requirement. For parameter function table please see Table 6-2.

Table 6-2 multifunction input function selection table

item	corresponding function	item	corresponding function
0	Leave control terminal unused	1	Multi-step speed control terminal 1
2	Multi-step speed control terminal 2	3	Multi-step speed control terminal 3
4	Multi-step speed control terminal 4	5	External forward run jog control
6	External reverse run jog control	7	Acce/Dece time selecting terminal 1
8	Acce/Dece time selecting terminal 2	9	Acce/Dece time selecting terminal 3
10	External device failure input	11	External reset input
12	Free stop input	13	External stop command
14	stop DC braking input command DB	15	Inverter run prohibition
16	Frequency increasing control (UP)	17	frequency descending control(DOWN)
18	Acce/Dece prohibited command	19	Three-wire run control
20	Closed-loop ineffective	21	PLC ineffective
22	Simple PLC pause command	23	PLC stop status reset (reset variable of PLC interruption moment, make it restart from first segment)
24	Frequency provision channel selection 1	25	Frequency provision channel selection 2
26	Frequency provision channel selection 3	27	Frequency switched to CCI
28	Command switched to terminal	29	Run command channel selection 1
30	Run command channel selection 2	31	Run command channel selection 3
32	Swing frequency jumpin	33	External interruption input
34	interior counter clearing end	35	interior counter triggering end
36	Interior timer clearing end	37	interior timer triggering end
38	Pulse frequency input(only effective for X7,X8)	39	Reserved
40	Reserved	41	Reserved
42	Reserved		

Now explain listed function in Table 6-2 as follows:
1~4: Multi-step speed control terminal. Can set 15 step speed run frequency by choosing ON/OFF combination of these function terminal.

Table 6-3 multi-step speed run selection table

K_{4}	$\mathrm{~K}_{3}$	$\mathrm{~K}_{2}$	$\mathrm{~K}_{1}$	Frequency setting
OFF	OFF	OFF	OFF	Common run frequency
OFF	OFF	OFF	ON	Multi-step frequency 1
OFF	OFF	ON	OFF	Multi-step frequency 2
OFF	OFF	ON	ON	Multi-step frequency 3
OFF	ON	OFF	OFF	Multi-step frequency 4
OFF	ON	OFF	ON	Multi-step frequency 5
OFF	ON	ON	OFF	Multi-step frequency 6
OFF	ON	ON	ON	Multi-step frequency 7

Above multi-step frequency can be used in multi-step speed run and simple PLC run, please see below an example of multi-step speed run:

We now define control terminal $\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$, separately as follows:
After set $\mathrm{F} 5.00=1, \mathrm{~F} 5.01=2, \mathrm{~F} 5.03=3$, $\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$, are used for realizing multi-step run, as shown in Fig.6-24.

Fig.6-24 multi-step run
In fig.6-25 see an example of terminal run command channel, can make forward, reverse run control by K5, K6. In Fig.6-24, by different logic combination of $\mathrm{K} 2, \mathrm{~K} 3, \mathrm{~K} 4$, the inverter can run according to common set frequency or $1 \sim 7$ multi-step frequency multi-speed operation based on above table.

Fig.6-25 multi-step speed run
Fig.6-26 exterior device failure always-open input
5~6: external jog run control input JOGF/JOGR. When run command channel is set to terminal run command channel F0.02=1, JOGF is jog forward run, JOGR is jog reverse run, jog operation frequency, jog accelerating decelerating time is defined in F2.06~F2.08 (remark: jog run command channel is determined by F0.02)

7~9: Acce\&Dece time terminal selection
Table 6-4 Acce\&Dece time terminal selection logic mode

Terminal 2	Terminal 2	Terminal 1	Acce/Dece time selection
OFF	OFF	OFF	Acce time $1 /$ Dece time 1
OFF	OFF	ON	Acce time $2 /$ Dece time 2
OFF	ON	OFF	Acce time $3 /$ Dece time 3
OFF	ON	ON	Acce time 4/ Dece time 4
ON	OFF	OFF	Acce time $5 /$ Dece time 5
ON	OFF	ON	Acce time 6/ Dece time 6
ON	ON	OFF	Acce time 7/ Dece time 7

Can realize selection for Acce\&Dece time1~7 by ON/OFF combination of Acce\&Dece time terminal.

10: external equipment fault input. Can input fault signal of external equipment by this terminal to be convenient for the inverter to monitor fault of external equipment. The inverter displays "E0.14", namely external equipment fault alarm after receiving the external equipment fault signal.

11: exterior restoration input. After the fault alarm takes place in the inverter, can restore the inverter through this terminal. Its function is same as
function of RESET key on the operation panel.
12: free stop input. This function is same as free stop during running defined in F1.05, but it's realized by control terminal to be convenient for long-distance control.

13: exterior stop command. This command is effective to all run command channel, when this function is effective the inverter stops running in mode set by F1.05.

14: DC injection braking input command DB during stop. Implement DC injection braking to the motor during stop by control terminal, in order to realize urgent parking and accurate orientation of the motor. Braking initial frequency, braking time are defined in F1.06, F1.07.

15: inverter run forbiddance. The inverter during running stops freely when this terminal is effective and forbidden to start in waiting status. Mainly applied to occasion needing safe linkage.

16~17: frequency increasing control UP/descending control DOWN. Realize frequency increasing or descending by control terminal, which substitute for keypad to realize long-distance control. Effective during common run if F0.00=2.Increasing descending speed is set by F5.09.

18: Acce\&Dece speed forbidden command. Let the motor not effected by any foreign signal(except stop command), keep running at current frequency.

Ineffective during normal decelerating stop.

19: three-wire run control. Please refer to function description of F5.08 run mode (three-wire run mode).

20: closed-loop ineffective. Realize flexible switch to lower level runmode under closed-loop run status.
(1) Can switch between closed-loop and lower level run mode only during closed-loop run($\mathrm{F} 3.00=1$).
(2) Start stop control, direction and Acce\&Dece time are subject to setting of corresponding run mode when it's switched to lower level run mode.

21: PLC ineffective. Realize flexible switch to lower level run mode under PLC run status.
(1) Can switch between PLC and lower level run mode only during PLC run $(\mathrm{F} 4.00 \neq 0)$.
(2) Start stop control, direction and Acce\&Dece time are subject to setting of corresponding run mode when it's switched to lower level run mode.

22: simple PLC pause command. Implement pause control to PLC process during running, run at zero frequency when this terminal is effective, not time for PLC run; after ineffective implement automatic speed tracking start and continue PLC run. For application method please refer to function description of F4.00~F4.14.

23: PLC stop status reset. Under stop status of PLC run mode, will clear PLC run step, runtime, run frequency etc. recorded when PLC run stops if this terminal is effective, please see F4 group function description.

24~26: terminal frequency provision channel selection. Through ON/OFF combination of frequency provision channel selection terminal 24, 25, 26, can realize frequency provision channel switch shown in Table 6-5. For relation of terminal switch and function code F0.00 setting, that is, latter effective.

Table 6-5 terminal frequency provision channel selection logic mode

frequency provision channel selection end 3	frequency provision channel selection end 2	frequency provision channel selection end 1	frequency provision channel selection
OFF	OFF	OFF	hold freq. setting
OFF	OFF	ON	potentiometer provision
OFF	ON	OFF	keypad number provision
OFF	ON	ON	terminal UP/DOWN adjusting provision
ON	OFF	OFF	serial port provision
ON	OFF	ON	VCI
ON	ON	OFF	CCI
ON	ON	ON	end PULSE provision

27: switch frequency to CCI. Frequency provision channel is switched to CCI provision compulsorily when this function terminal is effective, frequency provision channel come back to previous status when this function terminal is ineffective.

28: command switched to terminal. Run command channel is switched to terminal run command channel compulsorily when this function terminal is effective.

29~31: terminal select run command channel

Table 6-6 Run command channel logic mode

Run command channel selection terminal 3	Run command channel selection terminal 2	Run command channel selection terminal 1	Run command channel
OFF	OFF	OFF	hold run command channel
OFF	OFF	ON	keypad run command channel
OFF	ON	OFF	end run command channel (keypad STOP command ineffective)
OFF	ON	ON	end run command channel (keypad STOP command effective)
ON	OFF	OFF	serial port run command channel(keypad STOP command ineffective)
ON	OFF	ON	serial port run command channel(keypad STOP command effective)

Can realize control command selection shown in Table 6-6 by ON/OFF combination of run command channel selection terminal, For relation of terminal switch and function code F0.00 setting, that is, latter effective.

32: swing frequency jump-in. When swing frequency start mode is manual jump-in, swing frequency function effective if this terminal effective, see F6 function parameter description.

33: exterior interruption input. The inverter close off output and run at zero frequency during running upon receiving exterior interruption signal. The inverter implement automatic speed tracking start-up to resume running once external interruption signal is relieved.

34: interior counter clearing end. To clear built-in counter in the inverter with cooperation of counter triggering signal.

35: interior counter triggering end. Counting pulse input port of built-in counter, pulse max. frequency: 200 Hz , see function code F5.24, F5.25.

36: interior timer clearing end. To clear built-in timer in the inverter with cooperation of timer triggering signal.

37: interior timer triggering end. Please see function description for parameter F5.27.

38: pulse frequency input(only effective to $\mathbf{X 7} \mathbf{7 8}$). Only effective for multifunction input terminal $\mathrm{X} 7, \mathrm{X} 8$, this function terminal receive pulse signal as frequency provision, for relation between inputted signal pulse frequency and set frequency in detail, please refer to F7 group parameter.

39: reserved
40: reserved
41: reserved
42: reserved

F5.08	FWD/REV run mode selection	range: 0-3	0

This parameter defines 4 kinds of exterior terminal control mode for inverter running.

0: 2-wire control mode 1

K2	K1	run command
0	0	stop
1	0	reverse run
0	1	forward run
1		
1	stop	

Fig.6-27 2-wire run mode 1

1: 2-wire control mode 2

K2	K1	run command
0	0	
1	0	stop
0	1	forward run
1	1	reverse run

Fig.6-28 2-wire run mode 2

2: 3-wire control mode 1

Thereinto:
SB1: stop button
SB2: forward run button
SB3: reverse run button

Fig.6-29 3-wire run mode 1

Xi is multifunction input terminal of $\mathrm{X} 1 \sim \mathrm{X} 8$, here should define its corresponding terminal function as No. 19 "3-wire run control" function.

3: 3-wire control mode 2

SB1: stop button
SB2: run button

Fig.6-30 3-wire run mode 2
Xi is multifunction input terminal $\mathrm{X} 1 \sim \mathrm{X} 8$, here should define its corresponding terminal function as No. 19 " 3 -wire run control" function.

The inverter restores after failure and start at once if run command channel selecting terminal and terminal FWD/REV is effective during warning alarm stop.

F5.09	UP/DOWN velocity	range: $0.01-99.99 \mathrm{~Hz} / \mathrm{S}$	$\mathbf{1 . 0 0 H z} / \mathrm{S}$

This function code defines varying rate of the set frequency when it's modified by UP/DOWN terminal.

F5.10	Open circuit collector output terminal OC1 output setting	range: 0~24	0
F5.11	Open circuit collector output terminal OC2 output setting	range: 0~24	0
F5.12	Open circuit collector output terminal OC3 output setting	range: 0~24	0
F5.13	Open circuit collector output terminal OC4 output setting	range: 0~24	0

OC1~OC4 open collector output terminal, Table 6-7 shows option of above 4 function parameter, choosing same output terminal function repeatedly is allowed.

Table 6-7 output terminal function selection table

Item	Corresponding function	Item	Corresponding function
0	Inverter running signal (RUN)	1	Frequency arriving signal (FAR)
2	Frequency level detecting signal (FDT1)	3	Reserved

4	Overload warning signal(OL)	5	Output Freq. reach high limit(FHL)
6	Output Freq. reach low limit(FLL)	7	Inverter stop for under voltage blockage (LU)
8	Stop for exterior failure(EXT)	9	Inverter zero rotate speed running
10	PLC running	11	Simple PLC segment run finished
12	PLC finish one cycle run	13	Reserved
14	Inverter ready to run(RDY)	15	Inverter failure
16	Swing Freq. high\&low limit restriction	17	Interior counter final value arrive
18	Interior counter specified value arrive	19	Set runtime arrive
20	Interior timer timing arrive	21	OC1- variable Freq. for the $1^{\text {st }}$ pump OC2- power source for the $1^{\text {st }}$ pump OC3- variable Freq. for the $2^{\text {nd }}$ pump OC4- power source for the $2^{\text {nd }}$ pump
22	Reserved	23	Reserved
24	Reserved		

Now introduce function listed in Table 6-7 as follows:
$\mathbf{0}$: inverter during running(RUN). The inverter is in run status, output indicator signal.

1: frequency arriving signal(FAR). Refer to function description of F5.14.
2: Frequency level detecting signal(FDT1). Refer to function description of F5.15~F5.16.

3: reserved

4: overload warning signal(OL). Inverter output current exceed F9.05 overload detect level and time exceed F9.06 overload detect time, output indicator signal.

5: output frequency reach high limit(FHL). When set frequency \geqslant high limit frequency and run frequency reach high limit frequency, output indicator signal.

6: output frequency reach low limit(FLL). When set frequency \leqslant low limit frequency and run frequency reach low limit frequency, output indicator signal.

7: Inverter stops for under voltage blockage(LU). When the inverter is running, LED displays "P.OFF" and output indicator signal if DC bus-bar voltage is lower than limitative level.

8: stop for exterior failure(EXT). When the inverter give the alarm (E014) and stops for exterior failure, output indicator signal.

9: inverter zero rotate speed running. When the inverter output zero
frequency but in run status, output indicator signal.
10: PLC running
11: Simple PLC segment running finished. After simple PLC current segmentrun is finished, output indicator signal(single pulse signal, width 500 ms).

12: PLC finish one cycle run
13: reserved
14: Inverter ready to run(RDY). If this signal is effective, shows that bus-bar voltage is normal and run prohibition terminal is ineffective, the inverter can receive start-up command.

15: Inverter fault. If failure takes place when the inverter is running, the inverter output indicator signal.

16: Swing freq. high\&low limit restriction. After choosing swing frequency function, if frequency fluctuant range based on center frequency of swing frequency is above high limit frequency F0.10 or under low limit frequency F0.11, the inverter will output indicator signal, as shown in Fig. 6-31.

Fig.6-31 swing freq. range restriction Fig.6-32 freq. arriving signal output
17: Interior counter reach final value
18: Interior counter reach specified value
17~18 please refer to function description of F5.25~F5.26.
19: Set runtime arrive. When accumulative runtime of the inverter (F 2.52) reach set runtime(F2.51), output indicator signal.

20: Interior timing arrive. Refer to function description for F5.27.
21: OC1-variable Freq. for the $1^{\text {st }}$ pump
OC2- power source for the $1^{\text {st }}$ pump
OC3- variable Freq. for the $2^{\text {nd }}$ pump
OC4- power source for the $2^{\text {nd }}$ pump
22: Reserved
23: Reserved

24: Reserved

F5.14	Freq. arriving(FAR)detect range	range: $0.00-50.00 \mathrm{~Hz}$	$\mathbf{5 . 0 0 H z}$

This parameter is supplementary definition to No. 1 function in Table 6-7.As shown in Fig.6-32, when output frequency of the inverter is within high\&low detect range of set frequency, output pulse signal.

0: output frequency (0 -high limit frequency)
1: set frequency (0 -high limit frequency)
2: output current($0-2 \times$ rated current)
3: output voltage $(0-1.2 \times$ load motor rated voltage)
4: bus-bar voltage $(0-800 \mathrm{~V})$
5: PID provision $(0.00-10.00 \mathrm{~V})$
6: PID feedback $(0.00-10.00 \mathrm{~V})$
7: reserved
8: reserved
9: reserved

F5.18	Analog output(AO1)gain	range: $0.00-2.00$	1.00
F5.19	Analog output(AO1) offset	range: $0.00-10.00 \mathrm{~V}$	0.00

For AO 1 and AO 2 analog output, the user can modify display measuring range or emend meter head error by adjusting output gain if necessary.

F5.20	Analog output(AO2)selection	range: 0-9	0

Same as F5.17 function parameter description.

F5.21	Analog output(AO2)gain	range: $0.10-2.00$	1.00
F5.22	Analog output(AO2) offset	range: $0.00-10.00 \mathrm{~V}$	0.00

Same as F5.18 and F5.19 function parameter description.
This function makes real-time effect to analog output when it's being modified. note

F5.23	DO terminal output function selection	range: $0 \sim 9$	0

Same as F5.17 function parameter description.

F5.24	DO max. pulse output freq.	range: $0.1-20.0(\max .20 \mathrm{KHz})$	$\mathbf{1 0 . 0}$

DO port max. output pulse frequency corresponds to maximum value optioned by F5.23, for example 0: output frequency, then max. Output pulse frequency corresponds to high limit frequency.

F5.25	Set interior count number arriving provision	range: 0-9999	0
F5.26	Specified interior count number arriving provision	range: $0-9999$	0

F5.25, F5.26 is supplementary definition to No. 17, 18 function in Table 6-7.
Set count number provision, shows that when some number of pulse are inputted to Xi (count triggering signal input function terminal), OC1 (open collector Output terminal) output a indicator signal.

As shown in Fig.6-34, OC1 output an indicator signal when the 8th pulse is inputted to Xi. Here F5.25=8.

Specified count number provision, shows that when some number of pulse are inputted to Xi, Yi output a indicator signal, till set count number is reached.

As shown in Fig.6-34, OC2 start to output an indicator signal when the 5th pulse is inputted to Xi . Until set count number 8 is reached. Here F5.26=5. Specified count number is ineffective when it is bigger than set count number.

Fig.6-34 Set count number and specified count number provision

F5.27	Interior timing setting	range: $0.1-\mathbf{6 0 0 0 . 0 s}$	$\mathbf{6 0 . 0}$

This parameter is used to set timing time of interior timer of the inverter. The timer is activated by exterior triggering end(triggering end selected by F5.00~F5.07), the timer begins timing upon receiving exterior triggering signal, after it's up to timing time one effective pulse signal of 0.5 s will be outputted from relative OC end.

6.7 Traverse special function parameter group: F6

F6.00	Traverse function selection	range: $\mathbf{0}, 1$	0

0: traverse function ineffective

1: traverse function effective

F6.01	Traverse run mode	range: LED 1 Lt LED 2 nd bit: 0, 0,1	00

LED ${ }^{\text {st }}$ bit: jump-in mode
0: automatic jump-in mode. After start-up run at traverse preset frequency for a period of time, then enter into traverse operation automatically.

1: terminal manual run mode. When set the multifunction terminal $\mathrm{Xi}(\mathrm{Xi}=\mathrm{X} 1 \sim \mathrm{X} 8)$ to function 32 and it's effective, enter into traverse state; quit traverse state if ineffective and run frequency is at traverse preset frequency.

LED $2^{\text {nd }}$ bit:
0: changing traverse amplitude. Amplitude AW varies with center frequency, for its changing rate please see F 6.02 definition.

1: fixed traverse amplitude. Amplitude AW is determined by high limit frequency and F6.02.

A
Traverse center frequency input setting channel is set by F0.00 function.

F6.02	Traverse amplitude threshold	range: $\mathbf{0 . 0}-\mathbf{5 0 . 0}(\%)$	$0.0(\%)$

changing amplitude: $\mathrm{AW}=$ center frequency $\times \mathrm{F} 6.02$
fixed amplitude: $\mathrm{AW}=$ high limit frequency $\times \mathrm{F} 6.02$

Traverse run frequency is restricted by high limit, low limit frequency; if set improperly, abnormal traverse operaion arise.
note

F6.03	Sudden jumping freq.	range: $\mathbf{0 . 0}-\mathbf{5 0 . 0}$	$\mathbf{0 . 0}(\%)$

As shown in Fig.6-35.If this parameter is set to 0 , no jumping frequency.

F6.04	Traverse cycle	range: $0.1-999.9 \mathrm{~S}$	10.0 S

Whole time for a cycle including traverse rising, descending process.

F6.05	Triangle wave rising time	range: $\mathbf{0 . 0} \mathbf{- 9 8 . 0}(\%)$ (traverse cycle)	$\mathbf{5 0 . 0}(\%)$

Define runtime of traverse rising segment $=\mathrm{F} 6.04 \times \mathrm{F} 6.05$ (s), runtime of descending segment $=\mathrm{F} 6.04 \times(1-\mathrm{F} 6.05)(\mathrm{s})$. Please refer to description in Fig.6-35.

F6.06	Traverse preset frequency	range: $0.00-400.00 \mathrm{~Hz}$	0.00 Hz
F6.07	Traverse preset frequency latency time	range: $0.0-6000 \mathrm{~S}$	0.0 S

F6.06 is used for defining inverter run frequency before entering into traverse operation.
When automatic start-up mode is optioned, F6.07 is used for setting holding time running at traverse preset frequency before enter into traverse operation; When manual start-up mode is optioned, F6.07 setting is ineffective. Please see description in Fig.6-35.

Fig. 6-35 Traverse

6.8 Frequency provision function parameter group: F7

F7.00	VCI min. provision	range: 0.00-F7.02	0.0V
F7.01	VCI min. provision corresponding freq.	range: $\mathbf{0 . 0 0}$-high limit frequency	0.00 Hz
F7.02	VCI max. provision	range: $0.00-10.00 \mathrm{~V}$	9.9V
F7.03	VCI max. provision corresponding freq.	range: 0.00 -high limit frequency	50.00 Hz
F7.04	CCI min. provision	range: 0.00-F7.06	0.00 V
F7.05	CCI min. provision corresponding freq.	range: 0.00 -high limit frequency	0.00 Hz
F7.06	CCI max. provision	range: $0.00-10.00 \mathrm{~V}$	9.9 V
F7.07	CCI max. provision corresponding freq.	range: 0.00-high limit frequency	50.00 Hz
F7.08	YCI min. provision	range: 0.00-F7.10	0.00V
F7.09	YCI min. provision corresponding freq.	range: $\mathbf{0 . 0 0}$-high limit frequency(REV)	0.00 Hz
F7.10	YCI max. provision	range: $0.00-10.00 \mathrm{~V} / 5 \mathrm{~V}$	9.9 V
F7.11	YCI max. provision corresponding freq.	range: $0.00-$ high limit frequency(FWD)	50.00 Hz

F7.12	YCI dead area setting	range: $0.00 \mathrm{~V}-2.00 \mathrm{~V}$	0.10 V

The inverter can decide FWD run or REV run according to YCI input when YCI is selected to be frequency provision(i.e. $\mathrm{F} 0.00=6$). YCI frequency defined in F2.09 may be positive or negative when YCI isn't selected to be frequency provision.

Shown as the figure: 0-dead band the frequency is negative.
$5 \mathrm{~V}-$ dead band $-5 \mathrm{~V}+$ dead band YCI set frequency is 0
$5 \mathrm{~V}+$ dead band -10 V the frequency is positive

F7.13	PULSE max. input pulse	range: $\mathbf{0 . 0 1 - 2 0 . 0 \mathrm { K }}$	10.0 K
F7.14	PULSE min. provision	range: $0.0-$ F7.16	0.0 K
F7.15	PULSE min. provision corresponding freq.	range: $0.00-$ high limit frequency	$\mathbf{0 . 0 0 H z}$

F7.16	PULSE max. provision	range: F7.14(PULSE min. provision)-F7.13(max. input pulse)	10.0 K
F7.17	PULSE max. provision corresponding freq.	range: 0.00 -high limit frequency	50.00 Hz

F2.00 sets the analog channel filtering time constant, to filter input signal, the more long filtering time is, the more great anti-jamming ability is, but response speed descend; the more short filtering time is, the more fast the inverter respond, but anti-jamming ability is weakened.

See below relation curve of VCI and set frequency:

See below relation curve of CCI and set frequency:

> (1) plus characteristic
> (2) minus characteristic
> A:CCI provision
> Amin: min. provision
> Amax: max. provision
> fmax: corresponding freq. to max. provision

See below relation curve of YCI and set frequency:

A:YCI provision
Amin: min. provision
fmin: corresponding freq. to min. provision
Amax: max. provision
fmax: corresponding freq. to max. provision
See below relation curve of PULSE and set frequency:

P: PULSE provision
Pmin: min. provision fmin: corresponding freq. to min. provision
Pmax: max. provision fmax: corresponding freq. to max. provision

6.9 Motor and vector control parameter group: F8

F8.00	Control mode setting	range: 0,1	0

0: V/F control

Please select V/F control mode if you need to use single inverter to drive more than one motor.

1: vector control

Sensor less vector control run mode is mainly applied to speed control, torque control etc. which require high control performance.

F8.01	Motor rated voltage	range: $1-480 \mathrm{~V}$	Depend on device type
F8.02	Motor rated current	range: $0.1-999.9 \mathrm{~A}$	Depend on device type
F8.03	Motor rated frequency	range: $1.00-400.0 \mathrm{~Hz}$	Depend on device type
F8.04	Motor rated speed	range: $1-9999 \mathrm{r} / \mathrm{min}$	Depend on device type
F8.05	Motor pole quantity	range: $2-14$	Depend on device type
F8.06	Motor rated power	range: $0.1-999.9 \mathrm{KW}$	Depend on device type

Please set above parameters according to rated data of motor drived by the inverter for the sake of safe running.

F8.07	Motor stator resistance	range: $0.000-9.999 \mathrm{ohm}$	Depend on device type
F8.08	Motor rotor resistance	range: $0.000-9.999 \mathrm{ohm}$	Depend on device type
F8.09	Motor stator leakage inductance	range: $0.0-999.9 \mathrm{mH}$	Depend on device type
F8.10	Motor rotor leakage inductance	range: $0.0-999.9 \mathrm{mH}$	Depend on device type
F8.11	Motor mutual inductance	range: $0.0-999.9 \mathrm{mH}$	Depend on device type

The inverter will set F8.07-F8.10 to be default standard motor parameter everty time after motor rated data modified.

F8.12	Torque limit	range: $\mathbf{5 0 . 0} \mathbf{- 2 0 0 . 0 \%}$	$\mathbf{1 5 0 . 0 \%}$

This parameter is used to limit torque current outputted from speed adjustor.
Torque limit value $50.0-200.0 \%$ is percentage of inverter rated current; torque $\operatorname{limit}=100 \%$, i.e., set torque current limit is rated current of the frequency inverter.

F8.13	Speed loop proportion gain	range: $\mathbf{0 . 0 0 0}-6.000$	$\mathbf{0 . 7 0 0}$
F8.14	Speed loop integral time constant	range: $\mathbf{0 . 0 0 0}-\mathbf{9 . 9 9 9}$	$\mathbf{0 . 3 6 0}$

By F8.13, F8.14 you can set proportion gain and integral time of the speed adjustor to change speed response characteristic of vector control.

F8.15	Motor stability coefficient	range: $0-4$	3
F8.16	Filter time displayed instead freq.	range: $0 \sim 999$	6

If surge happens or the motor run unstably, you can eliminate surge by increasing F8.15.

F8.17	Motor speed correction factor	Range :0-9999\%	$\mathbf{1 0 0 \%}$

This parameter check display error, have no effect on the actual value.

6.10 Protection function parameter group: F9

F9.00	Waiting time for starting again when power off	0.0-20.0S (0 means do not enable this function)	0

F9.01	Failure self-renew times	range: 0-10	0
F9.02	Failure self-renew interval	range: 0.5-20.0S	5.0S

During run process, failure will take place accidently due to load fluctuation and the inverter will cut off output, here failure self-restoration function can be applied in order to let the device continue to run. During self-restoration, the inverter will try to resume running in speed checking restart mode but stop outputting and failure protected if the inverter can't resume running successfully within set times. Self-restoration function will be shut down if failure self-restoration times is set to 0 .

When the inverter is under running, due to the system power supply it may appear short time power failure so that the Inverter stops output, in order not to suspend the equipment operation when the power on, please adopt F9.00 function. After starting the inverter, though setting the parameter of F9.00, automatically resume run as inspection speed start method.
(1) To use failure self-restoration function must take device allowance and no essential failure in the inverter as preconditions.
(2) Self-restoration function is ineffective to failure protection caused by overload and over heat.
(3) When F9.00 is not 0 , the restart function works without personnel operation, so this feature needs to be used with caution.
(4) Regardless of forward or reverse before power failure, it will be forward after restart.

F9.03 Motor overload protection mode selection
 range: 0,1
 1

This parameter defines protecting action mode when overload, overheat take place in the inverter.

0: no action. No motor overload protection characteristic(apply with caution), here the inverter have no overload protection for load motor;

1: inverter cut off output at once. The inverter cut off output and motor stop freely when overload, overheat take place.

F9.04	Motor overload protection coefficient	range: 20.0-120.0(\%)	$\mathbf{1 0 0 . 0}(\%)$

This parameter sets sensibility of the inverter implementing thermal relay protection to load motor, can implement correct heat protection to the motor by setting this value when output current value of load motor don't match rated current of the inverter, as shown in Fig.6-36.

Value of this parameter can be determined by following formula:

$$
\text { [F9.04] }=\frac{\text { motor rated current }}{\text { inverter rated output current }}
$$

[果note

The inverter will lose thermal relay protecti on function when a piece of inverter drive multi ple motors in parallel. Please assemble heat protection relay at input side of each motor to protect them effectively.

Fig.6-36 electronic thermal relay protection Fig.6-37 overload alarm

F9.05	Overload warning alarm checkout level	range: $20-200(\%)$	$130(\%)$
F9.06	Overload warning alarm delay time	range: $0.0-20.0 \mathrm{~S}$	5.0 S

If output current exceeds electric level set by parameter F9.05 continuously, open collector outputs effective signal(refer to Fig.6-37 and interrelated description of parameter F5.10~F5.13) after delay time set by F9.06 passed.

F9.07	Overvoltage stall selection	range: 0,1	1
F9.08	Overvoltage stall point	range: $120-150(\%)$	$\mathbf{1 3 0}(\%)$

0 : banned
1: allowed
Actual descending rate of motor speed may be lower than that of output frequency due to effect from load inertia when the inverter is in decelerating run process, here the motor will feed electric energy back to inverter which will make DC bus-bar voltage of the inverter increase, overvoltage protection will takes place if not take steps.

Overvoltage stall protection function, indicates that output frequency of the inverter stops descending if bus-bar voltage detected during run process exceed stall voltage point defined by F9.08 (relative to standard bus-bar voltage) and the inverter continue to implement decelerating run when bus-bar voltage detected again is lower than stall overvoltage point. As shown in Fig. 6-38.

Fig.6-38 overvoltage stall function

F9.09	Automatic current limit level	range: $110-200(\%)$	$150(\%)$
F9.10	Frequency descending rate during current limiting	range: $0.00-99.99 \mathrm{~Hz} / \mathrm{S}$	$0.00 \mathrm{~Hz} / \mathrm{S}$
F9.11	Automatic current limiting action selection	range: 0,1	0

By automatic current limiting function the inverter can limit load current not to exceed automatic current limiting level set by F9.09 to avoid tripping out for failure caused by rushing current. This function is especially suitable for some biggish inertia or acutely changing load occasion.

Automatic current limiting (F9.09) defines current threshold value of automatic current limiting action, its value is the percentage relative to inverter rated current.

Frequency descending rate during current limiting (F9.10) defines adjusting rate to output frequency during automatic current limiting action.

If frequency descending rate during automatic current limiting F9.10 is too small, inverter isn't easy to get rid of automatic current limiting state which may cause overload failure finally; If descending rate F9.10 is too big, the inverter may be in generating state for long time which will cause overvoltage protection.

Automatic current limiting function is effective in accelerating decelerating state and whether it's effective in constant speed run state is determined by automatic current limiting action selection (F9.11).

F9.11 $=0$ indicates that automatic current limiting is ineffective during constant speed running;

F9.11=1 indicates that automatic current limiting is effective during constant speed running;

Output frequency may varies during automatic current limiting action, so automatic current limiting function is not suitable for occasion demanding stable output frequency during constant speed run.
6.11 Failure record function parameter group: Fd

Fd. 00	Previous one time failure record	range:	$0 \sim 23$	0
Fd. 01	Previous two time failure record	range:	$0 \sim 23$	0
Fd. 02	Previous three time failure record	range:	$\mathbf{0 \sim 2 3}$	0
Fd. 03	Previous four time failure record	range:	$0 \sim 23$	0
Fd. 04	Previous five time failure record	range:	$0 \sim 23$	0
Fd. 05	Previous six time failure record	range:	$0 \sim 23$	0

0 : no failure
$1-23$: failure E0.01-E0.23, please see chapter 7 for specified failure type

Fd.06	Set freq. at previous failure	range: 0-high limit	0
Fd.07	Output freq. at previous failure	range: 0-high limit	0
Fd.08	Output current at previous failure	range: 0-999.9A	0
Fd.09	Output volt. at previous failure	range: 0-999V	0
Fd.10	DC bus-bar volt. at previous failure	range: 0~800V	0
Fd.11	Load motor speed at previous failure	range: 0~9999	0
Fd.12	Module temp. at previous failure	range: 0~100	0
Fd.13	Input end state at previous failure		0
Fd.14	Accu. runtime at previous failure	range: 0~65535h	$\mathbf{0}$

6.12 Password and manufacturer function parameter group: FF

FF. 00	User password	range: $0000-9999$	1

User password setting function is used for prohibiting unauthorized personnel from consulting and modifying function parameter.

Set this function code to 0000 when user password function isn't wanted.
First input 4 bits number as user password and press $\frac{\text { ENTER }}{\text { DATA }}$ key to confirm, then the password will come into effect at once.

Password modification:
Enter into password verification state by pressing $\frac{- \text { ESC }}{\mathrm{MENN}}$ key, after inputting primary 4 bits password parameter editing state is available, choose FF. 00 (here FF. $00=0000$), input new password and press

key to confirm, then the password come into effect at once.

Please keep the password you set without fail, in case the password is missing please consult the manufacturer.
note

FF. 01	Manufacturer password	range: $0000-9999$	0000

Setting function for the manufacturer, user need not modify it.

6.13 Stop assistant function parameter group: FA

FA.00	Auxiliary DC brake time	Range: 0.0-20.0s	0.0 s
FA.01	Auxiliary DC brake voltage	Range: 0-15 (\%)	$\mathbf{0}$

Auxiliary DC brake means when the inverter stop DC brake is finished give the second stage DC braking. Role in some special circumstances require rapid braking, and stop long time in the state of DC braking, but to prevent motor heat circumstances.

FA.02	Reserved		
FA.03	Reserved		

7 Troubleshooting

7.1 Failure and countermeasure

Possible failure types in EDS1000 are shown in Table 7-1 and failure code is from E001 to E023. Some failure code is reserved for intelligent automatic diagnosis function which will be executed continuously in future. When failure takes place in the inverter, the user should check according to note of this table first and record failure phenomena detailedly. Please contact our after-sale service and technical support Department or agent in your local place when technical service is needed.

Table 7-1 Failure type and the countermeasure

Failure code	Failure type	Possible reason	Countermeasure
E001	overcurrent during accelerating process	Accelerating time is too short	Prolong accelerating time
		Improper V/F curve	Adjust V/F curve setting, adjust manual torque boost or change to automatic torque boost
		Restart rotating motor	Set speed checking restart function
		Low power source voltage	Check input power supply
		Too small power of the inverter	Choose inverter with high-power
E002	overcurrent during decelerating process	Decelerating time is too short	Prolong decelerating time
		Have potential energy load or big Inertia load	Increase braking power of external energy consumption braking subassembly
		Power of inverter is a bit small	Choose inverter with high-power
E003	overcurrent during constant speed process	Load change suddenly or Have unwonted phenomena	Check or reduce break of the load
		Accel/Decel time is set to too short	Prolong accelerating decelerating time properly
		low power source voltage	Check input power supply
		Power of inverter is a bit small	Choose inverter with high-power
E004	overvoltage during accelerating process	Unwonted input voltage	Check input power supply
		Accel time is set to too short	Prolong accelerating time properly
		Restart rotating motor	Set speed checking restart function
E005	overvoltage during decelerating process	Decelerating time is too short	Prolong decelerating time
		Have potential energy load or big inertia load	Increase braking power of external energy consumption braking subassembly
E006	Overvoltage during constant speed process	Unwonted input voltage	Check input power supply
		Accel/Decel time is set to too short	Prolong accelerating decelerating time properly
		Input voltage change abnormally	Assemble reactor
		Load inertia is a bit big	Use energy consumption subassembly
E007	Inverter control power supply overvoltage	Unwonted input voltage	Check input power supply or look for service

E008	Inverter overload	Accel time is set to too short	Prolong accelerating time
		DC injection braking is too big	Reduce DC injection braking current, prolong braking time
		improper V/F curve	Adjust V/F curve and torque boost
		Restart rotating motor	Set speed checking restart function
		power source voltage is too low	check power source voltage
		Load is too big	Choose inverter with high-power
E009	Motor overload	improper V/F curve	Adjust V/F curve and torque boost
		power source voltage is too low	check power source voltage
		General motor run at low speed with big load	Can choose frequency conversion motor for long time low speed run
		motor overload protection factor set incorrectly	to set motor overload protection factor correctly
		motor blocked up or load change too suddenly and quickly	Check the load
E010	inverter overheating	Air-path blocked	To clear air-path or improve ventilation condition
		Ambient temperature is too high	Improve ventilation condition, lower carrier frequency
		Fan damaged	Replace the fan
E011	reserved	reserved	reserved
$\begin{array}{\|l\|} \hline \text { E012 } \\ \hline \text { E013 } \end{array}$	reserved	reserved	reserved
	Inverting module protection	Transient overcurrent of the inverter	Refer to countermeasure for overcurrent
		phase to phase short circuit or earthing short circuit of output 3 phase	wiring again
		Air-path blocked or fan damaged	To clear air-path or replace the fan
		Ambient temperature is too high	Lower ambient temperature
		Connecting wire or insert on control board loose	Check and connect the wire again
		Unwonted current wave caused by missing output phase etc.	Check wiring
		Assistant power supply damaged and drive voltage lacking	Look for service from manufacturer or agent
		Unwonted control board	Look for service from manufacturer or agent
E014	external device failure	use sudden stop key STOP in non-keypad run mode	Look up operation mode
		Use sudden stop key STOP under condition of stall	Set running parameter correctly
		Sudden stop terminal for external failure closed	Open external failure terminal after external failure is settled
E015	currentdetecting circuit failure	Connecting wire or insert on control board loose	Check and connect the wire again
		Assistant power supply damaged	Look for service from manufacturer or agent
		Hall component damaged	Look for service from manufacturer or agent
		Unwonted amplifying circuit	Look for service from manufacturer or agent

E016	RS485 communication failure	Baud rate set improperly	set Baud rate properly
		Serial port communication error	$\begin{aligned} & \text { press } \frac{\text { STOP }}{\text { RESEI }} \text { key to reset, } \\ & \text { look for Service } \end{aligned}$
		Failure warning parameter set improperly	Modify F2.16, F2.17
		Upper device doesn't work	Check if upper device work and wiring is correct
E017	reserved	reserved	reserved
E018	reserved	reserved	reserved
E019	Under voltage failure	Under voltage	check spot input voltage
E020	System disturbance	Serious disturbance	Reset by pressing $\frac{\text { STOP }}{\text { RESET }}$ key or Add mains filter at power supply input side
		Main control DSP read and write wrongly	Reset by the key-press, look for service
E021	reserved	reserved	reserved
E022	reserved	reserved	reserved
E023	E ${ }^{2}$ PROM read and write wrongly	Mistake take place when read or write control parameter	Reset by pressing Look for service from manufacturer or agent
P.OFF	Under voltage failure	Under voltage	Check spot input voltage

7.2 Failure record lookup

This series inverter can record latest 6 failure code and inverter run parameter of the last failure, to search these informations can redound to finding out reason of the failure.

Failure information is all stored in Fd group parameter, please enter into Fd group parameter to see about information by referring to keypad operation method.

code	content	code	Content
Fd. 00	previous one failure record	Fd. 08	output current at previous failure
Fd. 01	previous two failure record	Fd. 09	output volt. at previous failure
Fd.02	previous three failure record	Fd. 10	DC bus-bar vlot. at previous failure
Fd. 03	previous four failure record	Fd. 11	load motor speed at previous failure
Fd. 04	previous five failure record	Fd.12	module temp. at previous failure
Fd. 05	previous six failure record	Fd.13	input end state at previous failure
Fd. 06	set freq. at previous failure	Fd. 14	Accu. runtime at previous failure
Fd. 07	output freq. at previous failure	-	-

7.3 Failure reset

(1) Before reset you must find out reason of failure downright and eliminate it, otherwise may cause permanent damage to the inverter.

$!$
(2) If can't reset or failure takes place again after resetting, should look for reason and continuous resetting will damage the inverter.
(3) Reset should take place 5 minutes after overload, overheat protection action.

To resume normal running when failure takes place in the inverter, you can choose following any kind of operation:
(1) After you set any terminal of $\mathrm{X} 1 \sim \mathrm{X} 8$ to be inputted by external RESET (F5.00~F5.07=11), you can open it after connected to COM.
(2) When failure code is displayed, press
$\frac{\text { STOP }}{\text { RESET }}$ key after restoration is confirmed.
(3) Cut off power supply.

8 Maintenance

8.1 Routine maintenance

When you use EDS 1000 series you must assemble and operate it according to demand listed in this 《service manual》strictly. During run state, temperature, humidity, vibration and aging parts may affect it. To avoid this, it is recommended to perform routine inspections.

Table 8-1 Daily inspection items

Period		Inspection item	Inspection content	Criterion
daily	periodic			
\checkmark		Run state parameter	(1)output current	(1)within range of rated value
			(2)output voltage	(2)within range of rated value
			(3)inside temp.	(3)temp. increment $<35^{\circ} \mathrm{C}$
\checkmark		Cooling system	(1)installing ambient	(1)good ventilation, unblocked air-path
			(2)local fan	(2)rotate normally without abnormal noise
\checkmark		Motor	(1)heating	(1)no abnormality
			(2)noise	(2)even
	\checkmark	Inverter	(1) vibration, heating	(1)vibration balanced, proper wind temp.
			(2)noise	(2) without abnormal sound
			(3)fixation of lead, terminal	(3)fixed screw don't loose
\checkmark		$\begin{gathered} \text { Run } \\ \text { ambient } \end{gathered}$	(1)temperature, humidity	$\begin{aligned} & \text { (1) }-10^{\circ} \mathrm{C} \sim+40^{\circ} \mathrm{C} \\ & 40^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{Cused} \text { in lower volume or } \\ & \text { execute compulsory heat dissipating } \\ & \hline \end{aligned}$
			(2)dust, water and leakage	(2)no water leakage imprint, no dust
			(3)gas	(3)no peculiar smell

Recommend to inspect with following instrument:
Input voltage: electric voltmeter; output voltage: rectifying voltmeter; inputoutput current: pincers ammeter.

8.2 Inspection and replacement of damageable parts

Some component parts in the inverter will be abraded or bear descending performance for long-term usage, to assure that the inverter can run stably and reliably, it is recommended to perform defending maintenance and replace corresponding parts if necessary.
(1) cooling fan

Abnormal noise, even oscillation may take place if the fan have wearingbearing, aging blade, here replacement of the fan should be considered.
（2）filter electrolyte capacitance
When frequent－changing load causes increasing pulsant current and aging electrolyte under high ambient temperature，the electrolyte capacitance may be damaged and here should replace it．

8．3 Repair guarantee

（1）Within 18 months from purchasing date，if failure caused by inverter itself takes place under normal conservation and usage，we will provide free repair service．
（2）We will take some upkeep if one of following situations takes place within period of repair guarantee．
a．If did not use the inverter according to 《service manual》strictly or did not use it under ambient demanded in 《service manual》，which cause failure．
b．Failure caused by applying the inverter to non－normal function；
c．Failure caused by self－repair，refit which is not already allowed；
d．Damage caused by bad keeping，falling down from high place or other extrinsic factor after purchasing the inverter；
e．Failure caused by natural disaster or its reason such as unwonted voltage， thunderbolt，water fog，fire，salt corroding，gas corroding，earthquake and storm etc．；
f．Make bold to tear up product logo（such as：nameplate etc．）；Body serial number don＇t accord with that in repair guarantee card．
（3）We calculate service fee based on actual cost，which is subject to contract if any．
（4）You can contact the agent and also our company directly if you have questions． After repair guarantee period，we shall also provide lifetime charged repair service for our products．

Our company will also provide lifetime repair service with fee for inverter which is not within period of repair guarantee．
note

8．4 Storage

The user must pay attention to following points for temporary storage and long－term storage after purchasing the inverter：
（1）Avoid storing the inverter in high temperature，moist place and place of dust， metal powder and assure good ventilation．
（2）Longtime storage will cause electrolyte capacitance of low quality，so must assure that it＇s electrified for one time within 2 years and electrification time is not shorter than 5 hours and input voltage must be increased to rated value gradually by voltage adjustor．

9 Fitting parts

9.1 Communication subassembly

9.1.1 Long-distance operation key board

Maximum electric distance from local keypad to inverter is 2 m .
RS485 communication mode is adopted between inverter and long-distance keypad, only a four-core cable is needed between them and maximum electric distance can reach 1000 m . They communicate with each other in main-auxiliary mode, namely take long-distance keypad as main device and inverter as auxiliary one. Connecting wire end is fixed by common screw which is easy to maintain.

This series of inverter support usage of local keypad and long-distance keypad at the same time, no priority order, both can operate the inverter synchronously. Following function can be realized by long-distance keypad:
(1) Can control run, stop, jog, failure restoration, changing set frequency modifying function parameter and run direction of auxiliary device.
(2)Can identify auxiliary device type and monitor run frequency, set115 frequencyoutput voltage, output current, analog closed loop feedback, analog closed loop setting and exterior counting value of auxiliary device.

EN-KB8

Fig.9-1 long-distance keypad

9.1.2 Communication cable

(1) Long-distance keypad communication cable

Type: EN-LC0030 (3.0m)
Used for connecting between long-distance keypad and inverter.
Remark: $1 \mathrm{~m}, 2 \mathrm{~m}, 3 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 15 \mathrm{~m}$ are standard deployment for our company's inverter, it's needed to subscribe for the cable if it exceeds 15 m .

10 Examples

10.1 Common speed regulation running

10.1.1 Basic wiring diagram

Fig.10-1

10.1.2 Set following basic parameter:

(1) set parameter F8.01-F8.06 according to rated value of the motor.
(2) set F0.00 parameter to 0 , choose keypad analog potentiometer to set frequency.
(3) set F0.02 parameter to 0 , choose keypad to control start-up, stop.
(4) use F0.03 parameter to set run direction.

10.1.3 Realized function

(1) Realize stepless speed regulation to the motor, use keypad to control start/stop and keypad analog potentiometer to adjust frequency.
(2) Bear failure warning function.
(3) Connect with cymometer, which indicates output frequency of the inverter.

10.1.4 Application field

Used for common speed regulation field, such as: transportation machine, china machine, baccy machine, metallurgy machine etc.

10.2 Terminal control running

10.2.1 Basic wiring diagram

Fig.10-2

10.2.2 Parameter setting

(1) Set parameter F8.01-F8.06 according to rated value of the motor.
(2) Set F0.00 parameter to $4 \sim 6$ to choose VCI, CCI, YCI accordingly, can accept frequency set signal within $0 \sim 10 \mathrm{~V}$.
(3) Set F0.02 parameter to 1 , to choose terminal run command channel.
(1) If F5.08=0, namely 2 wire control mode 1: FWD and COM are closed, moter is in forward run; REV and COM are closed, motor is in reverse run; FWD, REV and COM are closed or opened together, the inverter stop.
(2) Set frequency is specified through VCI analog channel.

10.2.3 Realized function

(1) control forward run/reverse run of the motor by external on-off quantum.
(2) control speed of the motor by $0 \sim 10 \mathrm{~V}$ signal.
(3) bear failure warning and output current indication function.

10.2.4 Application field

Used in field where need long-distance control to start/stop of the motor such as blower, food, chemical machine, packing machine, transportation machine etc.

10.3 Multi-step speed control running

10.3.1 Parameter setting

(1) Set parameter F8.01-F8.06 according to rated value of the motor.
(2) Set F0.02 parameter to 1 , to choose terminal run command channel.
(3) F2.30-F2.44: multi-step speed frequency setting.
(4) F5.00-F5.07 set multi-step speed terminal control function.
(1) If F5.08 $=0$, namely 2 wire control mode 1: FWD and COM are closed, moter is in forward run; REV and COM are closed, motor is in reverse run; FWD, REV and COM are closed or opened together, the inverter stop.

A
(2) If any one or more terminal of $\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$ and COM are closed together, the inverter will run according to multi-step speed frequency determined by X 1 , X2, X3(multi-step speed frequency set value are determined by F2.30-F2.44).Can realize manual control and automatic control for multiple frequency, and also control for forward run, reverse run, free stop, reset, warning protection.

10.3.2 Basic wiring diagram

Fig.10-3

10.3.3 Realized function

(1) make use of external on-off quantum signal to control start/stop of the motor.
(2) make use of external on-off quantum signal to make the motor run at set frequency.
(3) bear free stop and reset function by utilizing external on-off quantum signal.
(4) bear warning alarm and PLC run indication function.

10.3.4 Application field:

Applied in field where need frequent multi-speed adjustment to motor speed such as toughened glass, weaving, paper making, chemical etc..

10.4 Closed-loop control system

10.4.1 Parameter setting

(1) Set parameter F8.01-F8.06 according to rated value of the motor.
(2) $\mathrm{F} 3.00=1$: setting channel selection, here PID closed loop run control is effective.
(3) F3.01=1: setting channel selection, here choose VCI as provision channel of PID adjustor.
(4) F3.02 $=1$: feedback channel selection, here choose CCI as feedback channel, $4-20 \mathrm{~mA} / 0-10 \mathrm{~V}$ feedback signal.
(5) F3.08-F3.11, set according to spot requirement.

10.4.2 Basic wiring diagram

10.4.3 Realized function

(1) The inverter can adjust output automatically according to feedback signal
tomake constant voltage, constant temperature, constant current etc. available.
(2) can control start/stop of the motor from long distance.
(3) bear failure alarm and current indicator function.

10.4.4 Application field

Applied in field where need stable system, pressure, flux such as blower pump, constant pressure water supply, air compressor, air conditioner, freezer cooling tower, music fountain, heat supply etc..

10.5 Consecutive action running

10.5.1 Basic wiring diagram

Fig.10-5

10.5.2 Parameter setting

set 1\# inverter as follows:
(1) $\mathrm{F} 0.00=6$: YCI analog setting is frequency provision for $1 \#$ inverter.
(2) F0.02 $=1$ orF0.02 $=2$: terminal run command control.
(3) F2.15=0:the $1 \#$ inverter will be setted as mainframe run.
set 2\# inverter as follows:
(1) $\mathrm{F} 0.00=3$: serial port specified.
(2) $\mathrm{F} 0.02=3$ or $\mathrm{F} 0.02=4$: serial port running command control.
(3) F2.15is setted between 1 to 127 ,the $2 \#$ inverter will become the mainframe.

After above setting, can use serial communication of $1 \#$ inverter to realizeconsecutive action of $2 \#$ inverter.

10.5.3 Operation description

After receive forward run command from external switch(closed) and frequency specified value ($0 \sim 10 \mathrm{~V}$) from analog input terminal YCI, $1 \#$ inverter run at this frequency value. At the same time, already running state of $1 \#$ inverter, make $2 \#$ inverter get forward run command through serial communication, here, run frequency value from high-speed pulse output terminal of $1 \#$ inverter is
passed to 2\# inverter through serial communication.

10.5.4 Application field

Applied in field such as conveyer belt, coiler, factory production line, food chemistry etc.

10.6 Application to constant pressure water supply

10.6.1 Summary for constant pressure water supply board

This constant pressure water supply board (hearafter in 10.6 referenced as "the board") is constant pressure water supply controller for multiple pumps, and it has to work with EDS1000 to control constant pressure water supply system for multiple pumps effectively. This control system also has automatic control function fixed inverter driving mode and board repetition driving mode.

No need for adjustor and controller which is necessary to original system. It is a cheap system but has excellent function and reliable performance.It will make working time of every pump equal by time switching function to restrain aging of pump.

The board has eight node outputs, each of which can drive relay of AC250V. So it is capable of driving 4 pumps at best.

10.6.2 Outer dimension

10.6.3 Connection between constant pressure water supply controller and inverter

(1) Put outside

For inverter of 11 KW below, put constant pressure water supply controller outside the inverter. Constant pressure water supply controller is collected with the inverter by cables, as shown in Fig.10-7:

Fig.10-7 connection between water supply controller and inverter
Explanation for terminals: A, B terminals of constant pressure water supply board are for RS485 receving and sending, Z 1 is over pressure signal output terminal when pump increased, Z 2 is pressure falling signal output terminal when pump reduced, Y is fire fighting pump control signal input terminal, $+24 \mathrm{~V}, \mathrm{COM}$ are respectively power supply input terminal and grounding terminal of the board.

10.6.4 Constant pressure water supply control and its mode

(1) Variable frequency/ bypass run and switch

Variable frequency run means that the motor is controlled by inverter output frequency. Bypass run means that the motor is connected to power source directly. Variable frequency/ bypass switch means process from inverter drive to power source drive or from power source drive to inverter drive.
(2) Operation mode
a. frequency conversion repetition mode

Inverter drives pump to run at variable frequencies, it can determine running pump quantity (within set range) according to pressure closed loop control requirement and only one pump can be drived by variable frequency at one time.Repetition mode of pump drived by the inverter is as $1-2-3-4-1-2-3$ -4-1, first-on first-off principle obeyed when the system reduces pump quantity.
b. frequency conversion fixed mode

The inverter drives one fixed pump, while at least one of the other three pumps has to be selected. Pump adding is according to repetition mode while pump reducing is according to the order of first-on first-off or first-on last-off.
c. shutdown mode

In the mode of a or b , all pumps stop running if the inverter is shutdown.
(3) Explanation for parameter selection of operation mode
a. frequency conversion repetition mode

If you would like to choose frequency conversion repetition mode, F3.31 must be set to 0 . The board control is ineffective if F3.20 is set to 0 , while F3.20 is set to other values the board will work according to description of the parameter.
b. frequency conversion fixed mode

If you would like to choose frequency conversion fixed mode, F3.31 must be set to 1 or 2 . The board control is ineffective if F3.20 is set to 0 , while F3.20 is set to other values the board will work according to description of the parameter.
(4) Automatic switch function

Automatic switch function is only effective in frequency conversion repetition mode(F3.31 is 0). The system will switch automatically like pump adding when switch time is up and pumps are in stable running state (no pump adding or reducing). For example, before switch board driving mode is $2 \mathrm{G}-3 \mathrm{G}-4 \mathrm{~B}$ while it is $3 \mathrm{G}-4 \mathrm{G}-1 \mathrm{~B}$ after switch. If drived pump quantity reaches the maximum, automatic switch function is ineffective even though switch time is up.

10.6.5 Function parameter setting for constant pressure water supply

For details of function parameter for constant pressure water supply, please see detailed description of F3 group (Closed-loop run control parameter group) in Chapter 6. Please notice that accelerating or decelerating time can't be longer than switch judging time for pumps. After wire as the figure, F5.00 must be set to 33 (external interruption input) and F5.01 must be 20 (closed-loop ineffective) in order to avoid water pressure fluctuation when pump adding or reducing. For detailed parameter setting information, please see below table.

function code	name	set range	explanation
F0.08	Acce time 1	Set according to actual situation	
F0.09	Dece time 1	Same as above	
F0.10	Upper limit freq.	Same as above	
F0.11	Lower limit freq.	Same as above	
F3.16	The value of sleep frequency valve	Same as above	
F3.17	The value of wake pressure valve	Same as above	
F3.18	The time of delay sleeping time	Same as above	
F3.19	The time of delay waking time	Same as above	
F3.20	Constant pressure water supply mode 1 selection	0:inverter works in one-drive-two water supply mode 1:constant pressure water supply board acts in one-drive-two mode 2:constant pressure water supply board acts in one-drive-three	This parameter needs to work with F3.31 to make constant pressure water supply control effective (for details please see description in 10.6.4)

		mode $3:$ constant pressure water supply board acts in one-drive-four mode			
F3.21	Long-distance pressure meter range	Set according to actual situation			
F3.22	Allowed offset for upper limit frequency and lower limit frequency when add or reduce pumps	Set according to actual situation	Set according to actual situation		
F3.23	Pump switch judging time	Set according to actual situation	Magnetic control conductor switch delay time		
F3.25	Automatic switch intervel	Set according to actual situation	This function will be ineffective if it is set to 0, please set according to actual situation		
W3.26	Water Monitor parameter display	1	Set to 1 can see C11, C12 monitoring given water pressure mode and feedback pressure		
F3.31	Constant pressure water supply mode 2 selection	0:frequency conversion repetition mode, first-on first-off 1: frequency conversion fixed mode, first-on first-off	This parameter needs to work with F3.20 to make constant pressure water supply control effective (for details please see description in 10.6.4)		
2: frequency conversion					
fixed mode, first-on					
last-off				$~$	33
:---					

10.6.6 Setting steps and basic wiring diagram

(1) Setting steps

Fig. 10-9
(2) Basic wiring diagram

Fig.10-10 basic wiring diagram for constant pressure water supply controller

Description:

(1B,C1B), (1G,C1G), (2B,C2B), (2G,C2G), (3B,C3B), (3G,C3G), (4B,C4B), (4G,C4G) denote respectively 2 terminals corresponding to control terminal"No. 1 variable frequency", "No. 1 bypass", "No. 2 variable frequency", " No. 2 bypass", " No. 3 variable frequency", " No. 3 bypass", " No. 4 variable frequency", " No. 4 bypass" on constant pressure water supply controller.
(1) Should apply AC contactor with mechnical interlock between inverter output andpower source bypass beside the motor, and perform logic interlock in electric control loop to avoid short circuit between inverter output and power source which will damage the inverter and interrelated device;
(2) Phase order of power source L1,L2,L3 connected with the motor should be the same as that of inverter output $\mathrm{U}, \mathrm{V}, \mathrm{W}$, please operate after confirm with phase order table to avoid motor reverse run caused during converted frequency/ power source switch.
(3) There should be over current protection device in power source bypass to the motor.

11 Serial port RS485 communication protocol

11.1 Summarization

We provide general RS485/RS232 communication interface in our Inverters (such as EDS1000 series, EDS2000 series, etc.) for the user. Through this communication interface upper device (such as PC, PLC controller etc.) can perform centralized monitor to the inverter (such as to set inverter parameter, control run of inverter, read work state of the inverter) and also long-distance control keypad can be connected to realize various usage requirement of the user.

This communication protocol is interface criterion file designed for realizing above-mentioned function, please read it earnestly and program according to it so that realize long-distance and network control to the inverter.

11.2 Protocol content and description

11.2.1 Communication net buildup mode

Fig.11-1 net buildup graph

11.2.2 Communication mode

At present, EDS1000 inverter can be used not only as auxiliary device but also mainframe device in RS485, if the inverter used as auxiliary ddevice, master device can be completed by PC,PLC or human interface, and if used as mainframe device ,the main- auxiliary control of the inverter can be complement by it, Specific communication mode is as mentioned below:
(1) PC or PLC as mainframe, inverter as auxiliary device, point-to-point communication between mainframe and auxiliary device.
(2) Auxiliary device don't response when mainframe send out command by broadcast address.
(3) User can set local address, baud rate and data format of the inverter through auxiliary device keypad.
(4) Auxiliary device report current failure information to mainframe in the last response frame.
(5) EDS1000 provides RS485 interface.

11.2.3 Transport mode

Asynchronous serial, semiduplex transport mode. Default format and transport rate: 8 -N-1, 9600 bps .For specific parameter setting please see description for F2.14~F2.17 group function code.

11.2.4 Data command frame format

Main device command frame format																		
sending order	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	$\begin{aligned} & \text { \# } \\ & \stackrel{0}{3} \\ & \stackrel{1}{0} \\ & \stackrel{0}{2} \end{aligned}$	苐	auxiliary device address		$\begin{aligned} & \text { B } \\ & \text { O. } \\ & \text {. } \\ & 0 \\ & 0 \\ & 0 . \\ & 0 . \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \end{aligned}$	$\begin{array}{\|l\|l} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ \end{array}$			$$	$\begin{aligned} & \stackrel{\sim}{\infty} \\ & \stackrel{2}{\#} \\ & \underset{\sim}{2} \end{aligned}$	응 त्रि \vdots \vdots \vdots \vdots				
$\begin{array}{\|c} \hline \begin{array}{c} \text { Definit- } \\ \text { ion } \end{array} \\ \hline \end{array}$	head		ress		$\begin{aligned} & \text { mand } \\ & \text { ea } \\ & \hline \end{aligned}$		Inde	x are			g	ta ar			eck	ut		end
sending byte	1		2					4										1

Auxiliary device response frame format																		
sending order	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
																		$\ddot{\#}$ $\stackrel{3}{E}$ 0 0 0
$\begin{gathered} \text { Definiti- } \\ \text { on } \\ \hline \end{gathered}$	head	add	ress		$\begin{aligned} & \text { onse } \\ & \text { rea } \\ & \hline \end{aligned}$		Index	are			un d	ata ar			heck	ut		end
sending byte	1		2					4				4						1

Fig.11-2 command/response frame format

Remark:
(1) "Setting data area" and "run data area" may not be existent in some command/data frame format, so in protocol command list it's marked with "nothing".
(2) In protocol effective character set is: $\sim, 1,2,3,4,5,6,7,8,9, A, B, C, D, E, F$ and hex data 0DH, ASCII lowercase $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}$ are invalid.
(3) Effective command frame length is 14 or 18 byte.

11.2.5 Explanation and description for format

(1) frame head

It's character " ~" (namely hex 7E),single byte.
(2) auxiliary device address

Data meanings: local address of auxiliary device, double byte. ASCII format. Inverter factory default is 01 .
(3) mainframe command/auxiliary device respond

Data meanings: mainframe send out command and auxiliary device respond to the command. Double byte, ASCII format.

Response code function classification:
Species 1>: command code=" 10 ", mainframe ask auxiliary device to report current preparation state and control situation.

Table 11-1 response code meanings for command code " 10 "

Response code ASCII	Meanings			
	Preparation state of auxiliary device	Control from mainframe is allowed	To set frequency is allowed	
10	Don't get ready	No meaning		
11	Get ready	Allow	Allow	
12	Get ready	Allow	Allow	
13	Get ready	Don't allow	Don't allow	
14	Get ready	Don't allow	Don't allow	
20	Frame error			

Species 2>: command code=" 11 "~" 15 ", 5 kinds of function command which mainframe send to auxiliary device, for detail please see protocol command list.

Table 11-2 response code meanings for command code "11~15"

response code ASCII	Meanings of response code	description
00	Auxiliary device communication and control is normal; function code modification is effective; password is correct.	When this response code is reported,
20	(1) frame checkout error;	

	(2) "command area" data overrun; (3) "index area" data overrun; (4) frame length error/non ASCII byte exist in area except frame head, frame end.	data of "command area", "index area" and "running data area" are not reported.
30	(1) control to auxiliary device is ineffective; (2) ineffective function code parameter modification; (3) "setting/running data" area data overrun. (4) password error.	Whether report this response code relate to current set state of auxiliary device. When report data of area" , "index area" and "run data area" are reported according to protocol requirement.

(4) auxiliary index/command index/failure index

Data meanings: include auxiliary index byte and command index byte.
For mainframe, auxiliary index, command index are used for cooperating mainframe command in realizing specific function.

For auxiliary device, auxiliary index, command index are used for reporting failure state code, command index are reported without modification.

Data type: hex, 4 byte, ASCII format.
Command index occupy 2 low byte, data range: " 00 " "FF".
Auxiliary index occupy 2 high byte, data range: " 00 " \sim "FF" .
Auxiliary device failure state occupy "auxiliary index" byte, see table 11-3.
Table 11-3 failure type description

failure code	description	failure code	description
1	Accelerating run over current	13	Converting module protection
2	decelerating run over current	14	External device failure
3	Constant speed run over current	15	current detecting circuit failure
4	accelerating run over voltage	16	RS485 communication failure
5	decelerating run over voltage	17	reserved
6	Constant speed run over voltage	18	reserved
7	Controller power supply over voltage	19	Under voltage
8	Inverter overload	20	System disturbance
9	Motor overload	21	Reserved
10	Inverter over heat	22	Reserved
11	reserved	23	E'PROM read and write error
12	reserved		

(5) checkout sum

Data meanings: frame checkout, 4 byte, ASCII.
Calculation method: accumulative sum of ASCII code value of all byte from "auxiliary device address" to "run data" .
(6) frame end

Hex 0D, single byte.

11.2.6 Protocol command list

Frame 7E and frame end 0D, address, checkout sum, ASCII character format are omitted in following description.

Table 11-4 protocol command table

	Name	Mainframe order	$\left\lvert\, \begin{aligned} & \text { Auxi- } \\ & \text { liary } \\ & \text { index } \end{aligned}\right.$	order	run data setting range	Mainframe sending example, such as PC control operation of inverter(C language cluster format, auxiliary device address is set to 01)	run data precision	description
	ook up auxiliary motor state	10	00	00	no	$\sim 010 \mathrm{~A} 00000192$ \r	1	
	current set freq.	11	00	00	no	$\sim 010 \mathrm{B00000193} \backslash \mathrm{r}$	0.01 Hz	
	current run freq.	11	00	01	no	$\sim 010 \mathrm{~B} 00010194 \backslash \mathrm{r}$	0.01 Hz	
	Output voltage	11	00	02	no	$\sim 010 \mathrm{~B} 00020195 \backslash \mathrm{r}$	1 V	
	Output current	11	00	03	no	$\sim 010 \mathrm{~B} 00030196 \backslash \mathrm{r}$	0.1 A	
	Bus-bar voltage	11	00	04	no	$\sim 010 \mathrm{~B} 00040197 \mathrm{r}$	1V	
	Load motor speed	11	00	05	no	$\sim 010 \mathrm{~B} 00050198 \backslash \mathrm{r}$	1rpm	
	Module temp.	11	00	06	no	$\sim 010 \mathrm{~B} 00060199 \backslash \mathrm{r}$	$1^{\circ} \mathrm{C}$	
	Runtime	11	00	07	no	$\sim 010 \mathrm{~B} 0007019 \mathrm{~A} \backslash \mathrm{r}$	1h	
	accumulative time	11	00	08	no	$\sim 010 \mathrm{~B} 0008019 \mathrm{~B} \backslash \mathrm{r}$	1h	
	Input terminal	11	00	09	no	$\sim 010 \mathrm{~B} 0009019 \mathrm{C} \backslash \mathrm{r}$	no	
	output terminal	11	00	0A	no	$\sim 010 \mathrm{~B} 000 \mathrm{~A} 01 \mathrm{~A} 4 \backslash \mathrm{r}$	no	
	analog input VCI	11	00	0B	no	$\sim 010 \mathrm{~B} 000 \mathrm{~B} 01 \mathrm{~A} 5 \backslash \mathrm{r}$	0.01 V	
	analog input YCI	11	00	0 C	no	$\sim 010 \mathrm{~B} 000 \mathrm{C} 01 \mathrm{~A} 6 \backslash \mathrm{r}$	0.01 V	
	analog input CCI	11	00	0D	no	$\sim 010 \mathrm{~B} 000 \mathrm{D} 01 \mathrm{~A} 7 \backslash \mathrm{r}$	0.01 V	
	exterior pulse input	11	00	0E	no	$\sim 010 \mathrm{~B} 000 \mathrm{E} 01 \mathrm{~A} 8 \backslash \mathrm{r}$	0.01 Hz	
	read inverter state	11	00	0F	no	$\sim 010 \mathrm{~B} 000 \mathrm{~F} 01 \mathrm{~A} 9 \backslash \mathrm{r}$	no	
	auxiliary device run command	12	00	00	no	$\sim 010 \mathrm{C} 00000194 \backslash \mathrm{r}$	no	
	set current run frequency provision of auxiliary device	12	00	01	$0 \mathrm{~Hz} \sim$ high limit freq.	$\sim 010 \mathrm{C} 00010 \mathrm{FA} 0027 \mathrm{C} \backslash$	0.01 Hz	$\begin{aligned} & \text { Set freq. } \\ & =40.00 \mathrm{~Hz} \end{aligned}$
	auxiliary device run with run freq. provision	12	00	02	$0 \mathrm{~Hz} \sim$ high limit freq.	$\sim 010 \mathrm{C} 00020 \mathrm{FA} 0027 \mathrm{D} \backslash \mathrm{r}$	0.01 Hz	auxiliary device run set freq. $=40.00 \mathrm{~Hz}$
	auxiliary device forward run	12	00	03	no	~010C00030197\r	no	

	auxiliary device reverse run	12	00	04	no	~010C00040198\r	no	
	auxiliary device forward run with run freq. provision	12	00	05	$\begin{aligned} & \mathrm{OHz} \mathrm{\sim} \text { high } \\ & \text { limit freq. } \end{aligned}$	$\sim 010 \mathrm{C} 00050 \mathrm{FA} 00280 \mathrm{r}$	0.01 Hz	forward run boot-strap set freq. $=40.00 \mathrm{~Hz}$
	auxiliary device reverse run with run freq. provision	12	00	06	$\begin{aligned} & \text { 0Hz~ high } \\ & \text { limit freq. } \end{aligned}$	$\sim 010 \mathrm{C} 00060 \mathrm{FA} 00281 \mathrm{r}$	0.01 Hz	reverse run boot-strap set freq. $=40.00 \mathrm{~Hz}$
	auxiliary device stop	12	00	07	no	$\sim 010 \mathrm{C} 0007019 \mathrm{~B} \backslash \mathrm{r}$	no	
	auxiliary device iog run	12	00	08	no	$\sim 010 \mathrm{C} 0008019 \mathrm{C} \mathrm{\backslash r}$	no	
	auxiliary device forward jog run	12	00	09	no	$\sim 010 \mathrm{C} 0009019 \mathrm{D} \backslash \mathrm{r}$	no	
	auxiliary device reverse jog run	12		0A	no	$\sim 010 \mathrm{C} 000 \mathrm{~A} 01 \mathrm{~A} 5 \backslash \mathrm{r}$	no	
	auxiliary device stop jog run	12	00	0B	no	$\sim 010 \mathrm{C} 000 \mathrm{B01A6} \mathrm{\backslash r}$	no	
	auxiliary device failure restoration	12	00	0C	no	$\sim 010 \mathrm{C} 000 \mathrm{C} 01 \mathrm{~A} 7 \mathrm{r}$	no	
	auxiliary device urgent stop	12	00	0D	no	$\sim 010 \mathrm{C} 000 \mathrm{E} 01 \mathrm{~A} 8 \backslash \mathrm{r}$	no	
	Run freq. digital setting F0.01	13	00	01	no	~010D00010196\r	0.01 Hz	
	Run direction setting F0.03	13	00	03	no	~010D00030198\r	1	
	$\begin{aligned} & \text { accelerating time1 } \\ & \mathrm{F} 0.08 \\ & \hline \end{aligned}$	13	00	08	no	~010D0008019D\r	0.1S	
\bigcirc	$\begin{aligned} & \text { decelerating time1 } \\ & \mathrm{F} 0.09 \end{aligned}$	13	00	09	no	$\sim 010 \mathrm{D} 0009019 \mathrm{E} \backslash \mathrm{r}$	0.1S	
	Run freq. digital setting F0.01	14	00	01	0Hz~ high limit freq.	$\sim 010 \mathrm{E} 00011388026 \mathrm{~B} \backslash \mathrm{r}$	0.01 Hz	Set function code F0.01=50. 00 Hz
	Run direction setting F0.03	14	00	03	0,1	$\sim 010 \mathrm{E} 00030001025 \mathrm{Alr}$	1	Set function code F0.03 to reverse run
$\stackrel{\sim}{9}$	Accelerating timel F0.08	14	00	08	0~8CA0	$\sim 010 \mathrm{E} 000803 \mathrm{E} 8028 \mathrm{~B} \backslash \mathrm{r}$	0.1S	Set function code F0.08 to 10.0 s
	Decelerating timel F0.09	14	00	09	0~8CA0	$\sim 010 \mathrm{E} 000903 \mathrm{E} 8028 \mathrm{C} \backslash \mathrm{r}$	0.1S	Set function code F0.09 to 10.0 s

	Query auxiliary device software version	15	00	00	no	$\sim 010 \mathrm{~F} 00000197 \backslash \mathrm{r}$	1	

Table 11-5 response state word meanings of reading inverter state command

Bit	Signification		
	description	0	1
Bit0	Stop/run state	Stop	Run
Bit1	Logo for under voltage	Normal	Under voltage
Bit2	FWD/REV run logo	Forward run	Reverse run
Bit3	Swing freq. run mode logo	Ineffective	Effective
Bit4	Common run mode logo	Ineffective	Effective
Bit5	Jog run mode logo	No	Jog
Bit6	PLC run mode logo	No	Yes
Bit7	Multi-step freq. run mode logo	No	Yes
Bit8	PI closed loop run mode logo	No	Yes
Bit9	Set counting value arriving logo	No	Yes
Bit10	Specified counting value arriving logo	No	Yes
Bit11~15	Reserved		

Table 11-6 read auxiliary device function code parameter

Function definition	Read auxiliary device function code parameter: all function code parameter except user password and manufacturer password								
Meanings	Frame head	Address	Order		Order index		$\begin{aligned} & \text { Run } \\ & \text { data } \end{aligned}$	Checko ut sum	Frame end
Mainfram	7EH	ADDR	13		$\begin{gathered} \text { See } \\ \text { remark } \end{gathered}$		4	BCC	0DH
$\begin{gathered} \text { Byte } \\ \text { quantity } \end{gathered}$	1	2	2		4		0	4	1
Auxiliary device respond	7EH	ADDR	06		See remark		Functio n code para.	BCC	0DH
$\begin{gathered} \text { Byte } \\ \text { quantity } \end{gathered}$	1	2	2		4		-	4	1
	Command index=combinated by function code group number and hex code of function code number. For instance: If want to read parameter of F 0.05 function code, order index $=0005$; If want to read parameter of F 2.11 function code, order index $=020 \mathrm{~B}$; If want to read parameter of F 2.15 function code, order index $=020 \mathrm{~F}$; If want to read parameter of F2.13 function code, order index $=020 \mathrm{D}$;								
	Corresponding relation between decimal and hex value of function code group No.								
	function group	decimal		hex		function group		decimal	hex
	F0	0		00H		F6		6	06H
	F1	1		01H		F7		7	07H
	F2	2		02H		F8		8	08H
	F3	3		03H		F9		9	09H
	F4	4		04H		FD		13	0DH
	F5	5		05H		FF		15	OFH
virtual data	0~FFFF (namely 0~65535)								

Please input correct "user password" before you set user function code parameter.

Table 11-7 set auxiliary devsice function code parameter

Function definition	Set auxiliary device function code parameter: all function code parameter except user password and manufacturer password								
Meanings	Frame head	Address		Order		Order index	Run data	Checkout sum	Frame end
$\begin{aligned} & \text { Mainframe } \\ & \text { order } \end{aligned}$	7EH	ADDR		14		See remark	4	BCC	0DH
Byte quantity	1	2		2		4	0	4	1
Auxiliary device respond	7EH	ADDR		06		See remark	Function code para.	BCC	0DH
$\begin{aligned} & \text { Byte } \\ & \text { quantity } \end{aligned}$	1		2	2		4	4	4	1
Remark	Command index=combinated by function code group number and hex code of function code number. For instance: If want to set parameter of F 0.05 function code, order index=000B; If want to set parameter of F 2.11 function code, order index $=020 \mathrm{~B}$; If want to set parameter of F2.15 function code, order index $=020 \mathrm{~F}$; If want to set parameter of F 2.13 function code, order index $=020 \mathrm{D}$;								
	Corresponding relation between decimal and hex value of function code group No.								
	Function		Decin		Hex	Functi	ion group	Decimal	Hex
	F0		0		00H		F6	6	06H
	F1		1		01H		F7	7	07H
	F2		2		02H		F8	8	08H
	F3		3		03H		F9	9	09H
	F4		4		04H		FD	13	0DH
	F5		5		05H		FF	15	0FH
Virtual data	0~FFFF (namely 0~65535)								

Appendix 1 EDS1100 drawing machine inverter manual

1.1 Drawing machine schematic diagram

Drawing machine with retracting and releasing volume diagram shows as Diagram 1-1 (a) (b) shows. It is made up of host, tensile modulus, tension balance bar, wire-retracting machine and cable machine.

Diagram 1-1 Drawing machine with retracting and releasing volume diagram

2.1 Working Theory

2.1.1 Working Theory

To ensure the drawing machine keep constant tension in the process of receiving and releasing line and continue to line up line synchronously, especially for Micro-pulling machine, we generally take frequency output voltage signal of host as analog input voltage signal of wire retracting machine. The output frequency of wire retracting machine should be reduced gradually so as to make retracting and releasing wire in the same step with the increasing of wire retracting machine volume diameter, and the output frequency of wire-retracting machine is inversely proportional to volume diameter.

If we set the liner speed of retractable wire and releasable wire as V , and following:
$\mathrm{V}=\mathrm{i} * \omega * \mathrm{R}=2 \pi \mathrm{~F} * \mathrm{R}=\pi * \mathrm{i}^{*} \mathrm{~F} * \mathrm{D}$
$\mathrm{F}=\mathrm{i}^{*} \mathrm{~V} / \pi^{*} \mathrm{D}$
F refers to output frequency of wire retracting machine,
i refers to machinery rotation ratio of retractable wire and releasable wire,
V refers to liner speed of host, which is proportional to the output frequency of host. F is inversely proportional to the volume diameter of wire-retracting drum which indicated as D.

The output frequency of EDS1100 Series inverter is:
$\mathrm{F}=\mathrm{i}^{*} \mathrm{~V} / \pi^{*} \mathrm{D}+\mathrm{K} 2 * \mathrm{U}_{\mathrm{PID}}$
We define $\mathrm{K} 1=\mathrm{i} / \pi^{*} \mathrm{D}$, which called coil coefficient.
D_{0} means empty diameter of wire-retracting coil, when the coil diameter restores, K1 there means empty path coefficients.K1 is F2.22 and K2 is F2.23.

2.1.2 Working requirements

(1) Jog lead wire must be independent
(2) Host operates with slow acceleration and deceleration
(3) Smoothly start up with continuous line
(4) Steady operation with small swing
(5) Synchronous machine stop without hitting limit down.

2.1.3 Feedback polarity detection

After EDS1100 inverter connects with tension balance bar voltage feedback as diagram 1-1 shows, then move tension balance bar as it swings when wire-retracting machine retracts wire. In the mean while, you should monitor PID feedback voltage C. 12 (to revise F3.28=12, so the panel monitor parameter is PID feedback voltage), the value should change from low to high, generally change in the range of $0.00 \mathrm{~V} \sim 10.00 \mathrm{~V}$ or $2.00 \mathrm{~V} \sim 8.00 \mathrm{~V}$. If the value is not in this range, the
position of tension potentiometer should be changed to make the central point as about 5.00 V .This tension potentiometer should be the high-accuracy one with 360°.

2.1.4 Jog lead wire

The frequency of host jog lead wire and time of acceleration and deceleration are independent from the ones at normal work. Jog frequency is multi-section speed 2 (F2.06) generally at about 6.0 Hz . Jog acceleration and deceleration time (F2.07 and F2.08) is generally about 10.0S.

2.1.5 Maximum frequency

As the frequency output of host is provision linear speed of retractable and releasable wire, in order to ensure the liner relation between host frequency and wire-retracting machine frequency, we have to equate the maximum frequency between them. The high limit frequency of wire-retracting machine is just the maximum frequency of itself.

Maximum working frequency of host is decided by the maximum liner speed of drawing machine. Assuming we indicate the output frequency of host with highest linear speed as F0 and ratio between full-diameter and empty-diameter of wire-retracting machine as $\mathrm{N}=\mathrm{D} 1 / \mathrm{D} 0(\mathrm{~N}$ is generally 1.2~1.8). Mechanical transmission ratio between wire-retracting machine and host is $\mathrm{i}(\mathrm{i}$ is usually about 1).Then the following:

$$
\mathrm{F}_{\mathrm{N}} / \mathrm{F}_{\mathrm{F}}=\mathrm{N}
$$

F_{N} indicates output frequency of wire retracting machine empty- diameter
F_{F} indicates output frequency of wire retracting machine full-diameter.
$\left(\mathrm{F}_{\mathrm{N}}+\mathrm{F}_{\mathrm{F}}\right) / 2=\mathrm{i} * \mathrm{~F}_{0}$
$\mathrm{F}_{\mathrm{N}}=\mathrm{N} /(\mathrm{N}+1) * 2 * \mathrm{i}^{*} \mathrm{~F}_{0}$
Maximum frequency of host and wire retracting machine is:
$\mathrm{F}_{\mathrm{MAX}}=\mathrm{MAX}\left(\mathrm{F}_{\mathrm{N}}, \mathrm{F}_{0}\right)$
Suppose we set $\mathrm{i}=1, \mathrm{~N}=1.8, \mathrm{~F}_{0}=70.0 \mathrm{~Hz}$, we can get $\mathrm{F}_{\mathrm{N}}=90.0 \mathrm{~Hz}, \mathrm{~F}_{\mathrm{F}}=50.0 \mathrm{~Hz}$.
So the maximum frequency of host $\mathrm{F}_{\mathrm{MAX}}=90.0 \mathrm{~Hz}$, and the upper limit
frequency $\mathrm{F}_{0}=70.0 \mathrm{~Hz}$.
And the maximum frequency of wire receiving machine $\mathrm{F}_{\mathrm{MAX}}=90.0 \mathrm{~Hz}$, and
The upper limit frequency $\mathrm{F}_{\mathrm{MAX}}=90.0 \mathrm{~Hz}$.

2.1.6 Smoothly start up for wire retracting machine

The wire retracting machine is generally in the machinery low limit position, while not in zero position of tension sway bar. The PID adjustment makes a certain amount provision input frequency for wire receiving machine when host frequency is at 0 Hz , which will cause impact when wire retracting machine starts up if haven't made any relevant disposal, as to fine-drawing machine and
micro-puling machine, the impact will lead to wire disconnection. Therefore, the smoothly start-up disposal is needed. The method is as follows:

Start up acceleration deceleration time (acceleration deceleration time2)and smoothly switch to normal work acceleration deceleration time (acceleration deceleration time 1). Start up acceleration deceleration time is:

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{UP}}=\mathrm{T}_{\mathrm{UP} 4}-\left(\mathrm{T}_{\mathrm{UP} 2}-\mathrm{T}_{\mathrm{UP} 1}\right)^{*} \mathrm{t} / \mathrm{F} 2.39 \\
& \mathrm{~T}_{\mathrm{DN}}=\mathrm{T}_{\mathrm{DN} 4}-\left(\mathrm{T}_{\mathrm{DN} 2}-\mathrm{T}_{\mathrm{DN} 1}\right)^{*} \mathrm{t} / \mathrm{F} 2.39 \quad \text { The Unit of } \mathrm{F} 2.39 \text { is millisecond(MS) }
\end{aligned}
$$

To fine-drawing machine and micro-puling machine:
$\mathrm{F} 2.39=10000 \mathrm{~ms}=10.000 \mathrm{~s}, \mathrm{~T}_{\mathrm{UP} 2}=150.0 \mathrm{~s}, \mathrm{~T}_{\mathrm{DN} 2}=150.0 \mathrm{~s}, \mathrm{~T}_{\mathrm{UP1} 1}=2.0 \mathrm{~s}, \mathrm{~T}_{\mathrm{DN} 1}=2.0 \mathrm{~s}$.
To big and medium type drawing machine, we can reduce smoothly start-up time of wire retracting machine:
$\mathrm{F} 2.39=2000 \mathrm{~ms}=2.000 \mathrm{~s}, \mathrm{~T}_{\mathrm{UP} 2}=150.0 \mathrm{~s}, \mathrm{~T}_{\mathrm{DN} 2}=150.0 \mathrm{~s}, \mathrm{~T}_{\mathrm{UP} 1}=2.0 \mathrm{~s}, \mathrm{~T}_{\mathrm{DN} 1}=2.0 \mathrm{~s}$.

2.1.7 Volume diameter automatically calculate time interval

Along with the growth of wire retracting volume diameter, the output frequency of its needs to be constantly reduced. EDS1100 Series inverter has special volume calculation function interiorly, it can calculate present volume diameter dynamically in real time, in order to reach the best wire retracting effect. The time interval of automatically calculation is F2.21, and the unit is MS.(millisecond) To ensure the accuracy of volume diameter calculation and the stability of wire retracting machine sway bar, we usually set:

F2.21 $=200 \sim 3200 \mathrm{~ms}=0.200 \sim 3.200 \mathrm{~s}$

2.1.8 Dead zone range when automatically volume calculation

To insure the steady running of wire receiving machine near sway bar zero position and avoid the influence to sway bar amplitude caused by volume diameter automatically calculation,EDS1100 Series inverter set a certain dead zone which near sway bar zero position, and this result in automatically stopping volume diameter calculation in dead zone. The range of dead zone is: F2.34 $=0.00 \sim 2.00 \mathrm{~V}$.

2.1.9 Automatically volume diameter calculation

When tension balance bar deviates central position, there should be some error between volume diameter calculation result and its actual value, which needs to calculate volume diameter. And different balance bar positions adopt different calculation methods.
$0.00 \mathrm{~V} \sim \mathrm{~F} 2.34$: volume diameter calculation $0=$ dead zone
F2.34~F2.36: volume diameter calculation 1
F2.35~F2.37: volume diameter calculation 2
F2.36~F2.38: volume diameter calculation 3
F2.37~10.0V: volume diameter calculation 4

2.1.10 Volume diameter reset

When with empty diameter, the output frequency of wire retracting machine indicates as FN. And when with full diameter, the output frequency of wire retracting machine indicates as FF.

The output frequency with full diameter and empty diameter of wire retracting machine is different greatly, in order to make the liner speed of wire retracting machine and host in the same step as soon as possible, the volume diameter reset is needed when wire retracting machine changes volume. And the external terminal X6 should set as 39 , this terminal is defined volume reset terminal with EDS1100 Series inverter.

2.1.11 Drawing machine tension control

F3.00=1, EDS1100 Series inverter is drawing machine tension control mode.

2.1.12 Control wiring

(1) Connect Jog switch with host X2(defined as jog).
(2) Connect external terminal start-up switch with host FWD terminal.
(3)Connect pull wire speed potentiometer with host machine $+10 \mathrm{~V}, ~ \mathrm{VCI}$ and GND.
(4) Connect host analog output A02 terminal and GND terminal with VCI terminal and GND terminal of wire retracting machine.
(5) Connect tension bar potentiometer with +10 V , CCI and GND terminals of EDS1100 Series inverter.
(6) Other relative control signal.

3.1 EDS1100 Series inverter model No. and specification

EDS1100 Series inverter rated input power: 3 phase AC 380V;
Adaptable electric motor power range is $0.75 \sim 37 \mathrm{~kW}$;
Max.output voltage is the same as input voltage .
EDS1100 Series inverter model No. and rated output current show as attached list 1-1:

Attached list 1-1 EDS1100 Series drawing machine inverter model No.

Model No.	Adaptable Motor Rated power(kW)	Adaptable Motor Rated voltage(V)	Rated output current (A)
EDS1100-4T0007	0.75		2.3
EDS1100-4T0015	1.5	3 Phase AC 380 V	3.7
EDS1100-4T0022	2.2		5.0
EDS1100-4T0037	3.7		8.5
EDS1100-4T0055	5.5		13

EDS1100-4T0075	7.5		17
EDS1100-4T0110	11		25
EDS1100-4T0150	15		33
EDS1100-4T0185	18.5		39
EDS1100-4T0220	22		45
EDS1100-4T0300	30	60	60
EDS1100-4T0370	37		75

Remark: The external brake resistance must be configured when drawing machine inverter matches wire retracting motor. The reason is that inverter need to be provided bigger start-up and brake current and it brings out higher DC bus voltage when it accelerates and decelerates in short period. Technique index and spe.of EDS 1100 Series inverter indicated as attached list 1-2.

Attached list1-2 EDS1100 Series inverter technique index and spec.

Item			Item description
Output	Voltage		400V grade:0~380V; 200V grade:0~220V
	Frequency		$0 \mathrm{~Hz}-400 \mathrm{~Hz}$
	Over loading capacity		150% of rated current for 1 minute, 200% rated current for 0.5 second.
Power input	Rated volt.\& freq.		3 phase $380 \mathrm{~V}, 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$; single phase $220 \mathrm{~V}, 50 \mathrm{~Hz} / 60 \mathrm{~Hz}$.
	Allowed work volt.range		3 phase voltage: $320 \mathrm{~V} \sim 460 \mathrm{~V}$ single phase voltage: $200 \mathrm{~V} \sim 260 \mathrm{~V}$
Control performance	Control mode		Speed sensorless closed-loop slip vector control, open loop V/F control
	Speed regulation range		1: 100
	Start-up torque		150% of rated torque at 1 HZ frequency
	Running speed stable state precision		$\leq \pm 0.5 \%$ rated synchronous speed
	Frequency precision		Digital setting: max.frequency $\times \pm 0.01 \%$ Analog setting: max.frequency $\times \pm 0.2 \%$
	Torque boost		Automatic torque boost, manual torque boost $0.1 \% \sim 20.0 \%$
	V/F Curve (volt. frequency characteristic)		Set rated frequency randomly at range of $5 \sim 400 \mathrm{~Hz}$,can choose constant torque, degressive torquel, degressive torque 2, degressive torque 3 , in total 4 kinds of curve.
	Acceleration and deceleration curve		2 modes: Straight line accelerating decelerating and S curve accelerating decelerating; 7 kinds of accelerating decelerating time(unit:minute(minute/second can be optioned) ,max.time 6000 minute.
	Brake	$\begin{aligned} & \text { Power } \\ & \text { consumption } \\ & \text { brake } \end{aligned}$	Interior or external brake resistance
		DC brake	Optional start-up and stop, action frequency $0 \sim 15 \mathrm{~Hz}$, action volt. $0 \sim 15 \%$, action time $0 \sim 20.0$ second

	Input order signal	Host linear speed input, PID signal control
	Standard function	Interior PID controller: Keep constant tension of wire retracting and releasing . Volume diameter automatically calculate: keep synchronous wire retracting liner speed with host. Indentify volume diameter initial value automatically: To identify volume diameter initial value with the fastest speed, and also limiting amplitude of instant and synchronous wire retracting and releasing, speed out of control because of over voltage, electronic heat overload relay, torque boost, rotary speed trace, DC brake, restriction of high and low limit for frequency, offset frequency, frequency gain, adjustment of carrier frequency, automatically carrier noise adjustment, analog output, motor parameter automatically identification, RS-485 computer interface and LCD Chinese and English selection.
	Jog	Jog frequency range: $0.50 \mathrm{~Hz} \sim 50.00 \mathrm{~Hz}$; Jog acceleration deceleration time $0.1 \sim 60.0 \mathrm{~s}$ can be set
	Multi-section speed running	Realized by interior PLC or control terminal
	interior PID controller	Be convenient to make closed-loop system
	Automatic energy saving running	Optimize V/F curve automatically based on the load to realize power saving running
	Automatic volt. regulation (AVR)	Can keep constant output volt., when power source voltage varies.
	Automatic current limit	Limit running current automatically to avoid frequent over-current which will cause trip.
	Protection function	Over-current protection, Over-voltage protection, lack-voltage protection, over-heat protection, over-load protection, lack-phase protection(can be chose), etc.
	Pulse output channel	Pulse square wave signal output of $0 \sim 20 \mathrm{KHZ}$, can realize output of physical parameter such as setting frequency, output frequency ,etc.
	Analog output channel	2 channel of analog, thereinto AO1channel can be $4 \sim 20 \mathrm{~mA}$ or $0 \sim 10 \mathrm{~V}$, and AO2channel is $0 \sim 10 \mathrm{~V}$; through them the inverter can realize output of physical parameter such as setting frequency, output frequency etc.
	Running order specified channel	Operation keyboard provision, control terminal provision, serial port provision.
	Running frequency specified channel	Digital provision, analog provision, pulse provision, serial port provision, combined provision, can be switched at any time by kinds of method.
	LED display	Can display setting frequency, output frequency, output voltage, output current, etc. In total 20kinds of parameter.
	Lock the button	Lock all or part of the buttons (analog potentiometer can't be locked)
	Use site	Indoor, not bear sunlight, no dust, no corrosive gas,no flammable gas, no oil fog, no vapor, no water drop or salt,etc.
	Altitude	Lower than 1000 m .
	Ambient temperature	$-10^{\circ} \mathrm{C} \sim+40^{\circ} \mathrm{C}$ (under ambient temperature $40^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}$,please reduce the volume or strengthen heat sink)
	Ambient humidity	Smaller than 95% RH, no condensation water

	Vibration	Smaller than $5.9 \mathrm{~m} / \mathrm{s} 2(0.6 \mathrm{~g})$
	Storage tempera ion	$-40^{\circ} \mathrm{C} \sim+70^{\circ} \mathrm{C}$
	Defending grade	IP20
	Cooling mode	Compel wind cooling, By fan with automatic temperature control
Mounting mode		Wall hanging

4.1 Function code schedule graph

4.1.1 Function code schedule graph especially for drawing machine

Telecommunication serial No. is the function code address when computer communicates.

F0-Basic run function parameter group					
Function code	Name	Parameter setting	Unit	Factory default	Modificati on
F0.00	Frequency input channel selection	```0 : keyboard analog potentiometer setting operation keyboard digital setting terminal UP/DOWN adjust setting frequency(stored after power off) Serial port setting VCI analog setting (VCI-GND) CCI analog setting (CCI-GND) YCI analog setting (YCI-GND) terminal pulse (PULSE) frequency setting combination setting terminal UP/DOWN adjust setting frequency(not stored after power off)```	1	0	O
F0.02	Run command channel selection	0 : operation keyboard run control 1: terminal run command control(keypad STOP command ineffective) 2: terminal run command control(keypad STOP command effective) 3: serial port run command control ((keypad STOP command ineffective) 4: serial port run command control ((keypad STOP command effective)	1	0	O
F0.03	Run direction setting	Unit's digit: 0: forward run, 1: reverse run Tens place: 0: reverse run allowed 1: reverse run banned	1	00	\bigcirc
F0.08	Acce. time 1	0.1-6000.0	0.1	20.0	\bigcirc
F0.09	Dece. time 1	0.1-6000.0	0.1	20.0	\bigcirc
F0.10	Upper limit freq.	Lower limit freq. -400.00 Hz	0.01 Hz	50.00 Hz	\times
F0.14	Torque boost	0.0-20.0(\%)	0.1(\%)	2.0(\%)	\bigcirc

F1—Start-up, stop, brake function parameter group							
Function code	Name	Set range	Unit	Factory default	Modificat ion		
F1.05	Stop mode	$0:$ Deceleration stop $1:$ free stop : Deceleration + DC brake stop	1	0	\times		
F1.06	DC brake initiative freq. when stop running	$0.0-15.00 \mathrm{~Hz}$	0.01 Hz	0.00 Hz	\bigcirc		
F1.07	DC brake time when stop running	$0.0-20.0 \mathrm{~s}$	0.1 s	0.0 s	\bigcirc		
F1.08	DC brake voltage when stop running	$0-15(\%)$	1	0	\bigcirc		

F2-Auxiliary run function parameter group					
Function code	Name	Set range	Unit	Factory default	Modific ation
F2.00	Analog filter time constant	0.00-30.00s	0.01 s	0.20s	\bigcirc
F2.06	Jog run frequency	$0.10-50.00 \mathrm{~Hz}$	0.01 Hz	5.00 Hz	\bigcirc
F2.07	Jog acceleration time	0.1-60.0s	0.1 s	20.0s	\bigcirc
F2.08	Jog deceleration time	0.1-60.0s	0.1 s	20.0s	\bigcirc
F2.18	Acce.time2(Smoothly start-up Acce.time)	0.1-6000.0	0.1	20.0	\bigcirc
F2.19	Dece.time 2(Smoothly start-up Dece.time)	0.1-6000.0	0.1	20.0	\bigcirc
F2.21	Interval time 1 of retracting volume diameter calculation	0~500ms	1 ms	300 ms	\bigcirc
F2.22	Empty diameter gain(retracting and releasing gain)	0.0~800.0\%	0.1\%	40.0	\bigcirc
F2.23	PID adjustor gain	0.0~800.0\%	0.0\%	30.0	\bigcirc
F2. 24	Start-up volume diameter calculation gain selection	$\begin{array}{ll} \hline \text { 0: } & \text { F2.25 } \\ \text { 1: } & \text { F2.26 } \\ \hline \end{array}$	1	0	\bigcirc
F2.25	Start-up volume diameter calculation gain(volume diameter calculation gain 4)	0.0~20.0\%	0.1\%	0.8	\bigcirc
F2.26	Volume diameter calculation gain 3	0.0~20.0\%	0.1\%	0.4	\bigcirc
F2.27	Volume diameter calculation gain 2	0.0~20.0\%	0.1\%	0.0	\bigcirc
F2.28	Volume diameter calculation gain 1	0.0~20.0\%	0.1\%	0.0	\bigcirc
F2. 29	Upper limit of retracting volume gain	0.0~200.0\%	0.1\%	100.0	\bigcirc
F2.30	Start-up retracting and releasing gain control	0: calculation 1: with out change	1	1	\bigcirc
F2.31	Retracting and releasing speed gain +/control	$\begin{array}{ll} \hline 0: & 0 \sim \mathrm{~F} 2.30 \\ 1: & -\mathrm{F} 2.30 \sim \mathrm{~F} 2.30 \\ \hline \end{array}$	1	0	\bigcirc
F2.32	Retracting and releasing recombination control	0: externally input 1: interiorly input	1	0	\bigcirc
F2.33	Interval time 0 of retracting volume diameter calculation	$0 \sim 500 \mathrm{~ms}$	1	800	\bigcirc
F2.34	Dead zone of of retracting volume diameter calculation	$0.01 \sim 1.00 \mathrm{~V}$	0.01 V	0.10	\bigcirc

F2.35	Range 1 of retracting volume diameter calculation	F2.34~F2.36	1	0.70	\bigcirc
F2.36	Range 2 of retracting volume diameter	F2.35~F2.37	0.01 V	1.20	\bigcirc
F2.37	Range 3 of retracting volume diameter	F2.36~F2.38	1	1.70	\bigcirc
F2.38	Range 4 of retracting volume diameter	F2.37~5.00V	0.01 V	2.20	\bigcirc
F2.39	Smoothly start-up time	$100 \sim 1500 \mathrm{~ms}$	1	2000	\bigcirc
F2.40	Start-up PID gain control	$\begin{array}{\|lll\|} \hline 0: & \mathrm{K} 2=\mathrm{F} 2.39 & \\ 1: & \mathrm{T}<\mathrm{F} 2.39 & \text { K2 }=0 \\ & \text { T>F2.39 } & \text { K2 }=\mathrm{T} / \mathrm{F} 2.44 * \mathrm{~F} 2.39 \\ \hline \end{array}$	1	1	\bigcirc
F2.41	Smoothly start-up PID selection	$\begin{array}{\|ll\|} \hline 0: & \text { PID } \\ 1: & \text { PD } \\ \hline \end{array}$	1	1	O
F2.42	Volume diameter reset control	0: Stop with automatically reset 1: X6 terminal manual reset	1	0	\bigcirc
F2.43	Wire disconnecting and delay PID control	$\begin{array}{\|ll} \hline 0: & \text { PID } \\ 1: & \text { PD } \\ \hline \end{array}$	1	1	\bigcirc
F2.44	Time of wire disconnecting delay	$0 \sim 32000 \mathrm{Vms}$	1	5000	\bigcirc

F3—Closed-loop run function parameter group						
Function code	Name	Set range	Unit	Factory default	Modificat ion	
selection						

F3.30	Failure relay TA,TB,TC function selection	```inverter running (RUN) frequency arriving signal (FAR) frequency level detecting signal (FDT1) reserved Over load warning alarm signal (OL) Output frequency reach high limit (FHL) Output frequency reach low limit (FLL) inverter under voltage blockage stop (LU) external failure stop running (EXT) inverter zero speed running PLC running simple PLC section running finished PLC finish a cycle running reserved inverter ready to run (RDY) inverter malfunction Swing frequency high and low limit restriction interior counter reach final value interior counter reach specified value set run time arriving interior timing arriving reserved reserved reserved reserved```	15	\bigcirc

F5-Terminal correlative function parameter group					
Function code	Name	Set range	Unit	Factory default	Modifica tion
F5.00	Input terminal X 1 function selection	31: Run command channel selection 3 32: Swing frequency jump-in 33: External interruption input 34: Interior counter reset end 35: Interior counter triggering end 36: Interior timer reset end 37: Interior timer triggering end 38: Pulse frequency input (Only effective for X7,X8) 39: Reserved 40: Reserved 41: Reserved 42: Reserved	1	0	\times
F5.01	Input terminal X2 function selection	Same as above			
F5.02	Input terminal X3 function selection	Same as above			

F5.10	Open circuit electric collector output terminal OC 1 output setting	```inverter running (RUN) frequency arriving signal (FAR) frequency level detect signal (FDT1) Reserved Over load warning alarm signal (OL) Output frequency reach high limit (FHL) Output frequency reach low limit (FLL) inverter under voltage blockage stop (LU) external failure stop running (EXT) inverter zero speed running PLC running simple PLC section running finished PLC finish a cycle running Reserved inverter ready to run (RDY) inverter malfunction Swing frequency high and low limit riction interior counter reach final value interior counter reach specified value set run time arriving interior timing arriving OC1- the first pump of variable frequency OC2- the first pump of bypass frequency OC3- the second pump of variable frequency OC4- the second pump of bypass frequency 22: Reserved 23: Reserved 24: Reserved```			
F5.15	FDT1(frequency level) electric level	0.00-Upper limit frequency	0.01 Hz	10.00 Hz	\bigcirc
F5.16	FDT1 lag	$0.00-50.00 \mathrm{~Hz}$	0.01 Hz	1.00 Hz	\bigcirc
F5.17	Analog output (AO1)selection	```0 : output frequency (0 - high limit frequency) set frequency (\(0-\) high limit frequency) output current (\(0-2 \times\) rated current) output voltage \((0-1.2 \times\) load motor rated voltage) Busbar voltage \((0-800 \mathrm{~V})\) PID provision \((0.00-10.00 \mathrm{~V})\) PID feedback \((0.00-10.00 \mathrm{~V})\) Reserved Reserved Reserved```	1-1		\bigcirc
F5.18	Analog (AO1)gain	0.50-2.00	0.01	1.00	\bigcirc
F5.19	Analog output (AO1) offset	$0.00-10.00 \mathrm{~V}$	0.01	0.00	\bigcirc
F5.20	Analog output (AO2) selection	Same as F5.17	1	0	\bigcirc
F5.21	Analog output (AO2) gain	0.50-2.00	0.01	1.00	\bigcirc
F5.22	Analog output (AO2) offset	$0.00-10.00 \mathrm{~V}$	0.01	0.00	\bigcirc

F7-Frequency provision function parameter group					
Function code	Name	Set range	Unit	Factory default	Modifica tion
F7.03	VCI max.provision corresponding frequency	$0.00-$ high limit frequency	0.01 Hz	50.00 Hz	○

5.1.1 Wiring of host and wire retracting machine

Connect host inverter freq.output signal (AO2 terminal of EDS1100 series inverter) with VCI and GND terminals of EDS1100 Series inverter. The frequency output signal of host inverter is used as main synchronous signal of host and wire retracting machine and EDS1100 series inverter interior PID control as auxiliary synchronous adjustment signal, so as to insure constant wire retracting and releasing tension.

- Potentiometer liner speed of host provision
- Host button start-up
- Host button stop
- Host jog empty mould lead wire
- Host speed express to slave machine with forward input
- Host frequency start up slave machine horizontally
- Slave machine tension potentiometer feedback
- Slave frequency start up cable machine horizontally
- Slave machine wire disconnecting input
- Slave machine volume diameter reset
- Slave machine swift brake resistance
- Urgent stop by using urgent button
- Host and slave machine inverter malfunction stop
- Host and slave machine inverter malfunction reset

Note: Ansprechstrom current of intermediate relay KA6, KA8 should not more than 30 mA , otherwise, please use external power.

5.1.2 Wiring for wire retracting machine feedback

Connect 3 ends for tension balance bar potentiometer with $+10 \mathrm{~V}, ~ \mathrm{CCI}$ and GND terminals of EDS1100 series drawing machine inverter, so as to insure the minimum resistance between CCI and GND terminals when balance bar in the low limit position, and the maximum resistance when balance bar in the high limit position.

5.1.3 Wiring for brake resistance

EDS1100 Series drawing machine inverter need to accelerate and decelerate in short period to ensure constant wire-retracting and releasing tension. Inverter's DC busbar voltage will rise when it decelerates with high speed, so we need connect brake resistance externally in order to ensure normal work of inverter. We connect brake resistance with $\mathrm{P}+, ~ \mathrm{~PB}$ terminals of EDS1100 series inverter.

6.1 Parameters setting reference of big and medium type drawing machine

6.1.1 Host parameters of big and medium drawing machine (EDS1000 Series)

Function Code	Function Name	Factory Value	Setting
F0.00	Frequency input channel selection	1	4
F0.02	Run command channel selection	0	1
F0.08	Acceleration time 1	20.0	$40.0-60.0$
F0.09	Deceleration time 1	20.0	$40.0-60.0$
F0.10	Upper limit Frequency	50.00 Hz	80.00
F0.14	Torque boost	0.5	1.0
F2.06	Jog run frequency	5.00 Hz	6.00
F2.07	Jog acceleration time	20.0 s	6.0
F2.08	Jog deceleration time	20.0 s	6.0
F3.30	Failure relayTA,TB, TCfunction selection	15	15
F5.00	Input terminal X1 function selection	0	11
F5.01	Input terminal X2 function selection	0	5
F5.02	Input terminal X3 function selection	0	12
F5.10	Open circuit collector output terminal OCI Output setting	0	2
F5.15	FDT1(frequency level)electric level	10.00 Hz	4.00
F5.16	FDT1 lag	1.00 Hz	0.01
F5.17	Analog output (AO1)selection	0	0
F5.18	Analog output (AO1)gain	1.00	1.00
F5.19	Analog output (AO1)offset	0.00	0.00
F5.20	Analog output (AO2) selection	0	0
F5.21	Analog output (AO2) gain	1.00	1.00
F5.22	Analog output (AO2) offset	0.00	0.00
F7.03	VCI max. provision corresponding freq.	80.00	

6.1.2 Wire receiving machine parameters of big and medium drawing machine (EDS1000 Series)

Function Code	Function Name	Factory Value	Setting
F0.02	Run command channel selection	0	1
F0.03	Run direction setting	000	010
F0.08	Acceleration time 1	20.0	2.0
F0.09	Deceleration time 1	20.0	2.0
F0.10	Upper limit Frequency	50.00 Hz	75.00
F1.05	Stop mode	0	2
F1.06	DC brake initiative freq. when stop running	0.00	2.60
F1.07	DC brake time when stop running	0.0	1.5

F1.08	DC brake voltage when stop running	0	6
F2.00	Analog filter time constant	0.20s	0.03
F2.18	Acce. time 2(when start up smoothly)	20.0	150.0
F2.19	Dece. time 2(when start up smoothly)	20.0	150.0
F2. 21	Interval time lof retracting volume diameter calculation	500 ms	300
F2.22	Empty diameter gain(retracting and releasing gain)	100.0	40.0
F2.23	PID adjustor gain	30.0	30.0
F2.24	Start-up volume diameter calculation gain selection	0	0
F2.25	Start-up volume diameter calculation gain(volume diameter calculation gain 4)	2.0	1.0
F2. 26	Volume diameter calculation gain 3	0.4	0.4
F2.27	Volume diameter calculation gain 2	0.0	0.0
F2.28	Volume diameter calculation gain 1	0.0	0.0
F2.29	High limit of retracting volume gain	200.0	100.0
F2.30	Start-up retracting and releasing gain control	1	1
F2.31	Retracting and releasing speed gain $+/$ - control	0	0
F2.32	Retracting and releasing recombination control	0	0
F2.33	Interval time 0of retracting volume diameter calculation	800	800
F2.34	Dead zone of retracting volume diameter calculation	0.10	0.10
F2.35	Range 1of retracting volume diameter calculation	0.70	0.70
F2.36	Range 2 of retracting volume diameter calculation	1.20	1.20
F2.37	Range 3 of retracting volume diameter calculation	1.70	1.70
F2.38	Range 4 of retracting volume diameter calculation	2.20	2.20
F2.39	Time of starting up smoothly	2000	2000
F2.40	Start up PID again control	1	1
F2.41	Start up PID smoothly selection	1	1
F2.42	Volume reset control	0	0
F2.43	Wire disconnecting delay PID control	1	1
F2.44	Time of wire disconnecting delay	5000	5000
F3.00	Closed-loop run	0	1
F3.08	proportion gain KP	0.250	0.800
F3.09	KI Integral gain KI	0.010	0.010
F3.12	Deviation margin	1.0(\%)	1.0
F3.20	PID proportion gain 2	0.300	1.000
F3.21	PID Integral gain 2	0.000	0.000
F3.22	PID parameter self adjustment basis	1	1
F3.30	Failure relayTA,TB, TCfunction selection	15	15
F5.01	Input terminal X2 function selection	0	11

F5.02	Input terminal X3 function selection	0	12
F5.10	Open circuit collector output terminal OCI Output setting	0	2
F5.15	FDT1(frequency level)electric level	2.60 Hz	2.60 Hz
F5.16	FDT1 lag	0.01 Hz	0.01 Hz
F7.03	VCI max provision corresponding freq.	50.00	75.00

7.1 parameters setting reference of fine-drawing machine and micro-pulling machine

7.1.1 Host parameters of fine-drawing machine and micro-pulling machine (EDS1000 Series)

Function Code	Function Name	Factory Value	Setting
F0.00	Frequency input channel selection	1	4
F0.02	Run command channel selection	0	1
F0.08	Acceleration time 1	20.0	40.0-60.0
F0.09	Deceleration time 1	20.0	40.0-60.0
F0.10	Upper limit Frequency	50.00 Hz	80.00
F0.14	Torque boost	0.5	2.5
F2.06	Jog run frequency	5.00 Hz	6.00
F2.07	Jog acceleration time	20.0s	6.0
F2.08	Jog deceleration time	20.0s	6.0
F3.30	Failure relayTA,TB, TCfunction selection	15	15
F5.00	Input terminal X1 function selection	0	11
F5.01	Input terminal X2 function selection	0	5
F5.02	Input terminal X3 function selection	0	12
F5.10	Open circuit collector output terminal OCI output setting	0	2
F5.15	FDT1(frequency level)electric level	10.00 Hz	5.50
F5.16	FDT1 lag	1.00 Hz	0.01
F5.17	Analog output (AO1)selection	0	0
F5.18	Analog output (AO1)gain	1.00	1.00
F5.19	Analog output (AO1)offset	0.00	0.00
F5.20	Analog output (AO2) selection	0	0
F5.21	Analog output (AO 2) gain	1.00	1.00
F5.22	Analog output (AO2) offset	0.00	0.00
F7.03	VCI max. provision corresponding freq.	50.00	80.00

7.1.2 Wire receiving machine parameters of fine-drawing machine and micro-pulling machine (EDS1000 Series)

Function Code	Function Name	Factory Value	Setting
F0.02	Run command channel selection	0	1
F0.03	Run direction setting	000	010
F0.08	Acceleration time 1	20.0	2.0
F0.09	Deceleration time 1	20.0	2.0
F0.10	Upper limit Frequency	50.00 Hz	75.00
F1.05	Stop mode	0	2
F1.06	DC brake initiative freq. when stop running	0.00	3.00
F1.07	DC brake time when stop running	0.0	1.5
F1.08	DC brake voltage when stop running	0	8
F2.00	Analog filter time constant	0.20s	0.03
F2.18	Acce. time 2(when start up smoothly)	20.0	150.0
F2.19	Dece. time 2(when start up smoothly)	20.0	150.0
F2. 21	Interval time lof retracting volume diameter calculation	500 ms	300
F2.22	Empty diameter gain(retracting and releasing gain)	100.0	40.0
F2.23	PID adjustor gain	30.0	30.0
F2. 24	Start-up volume diameter calculation gain selection	0	0
F2.25	Start-up volume diameter calculation gain(volume diameter calculation gain 4)	2.0	1.0
F2.26	Volume diameter calculation gain 3	0.4	0.4
F2. 27	Volume diameter calculation gain 2	0.0	0.0
F2.28	Volume diameter calculation gain 1	0.0	0.0
F2. 29	High limit of retracting volume gain	200.0	100.0
F2.30	Start-up retracting and releasing gain control	1	1
F2.31	Retracting and releasing speed gain $+/$ - control	0	0
F2.32	Retracting and releasing recombination control	0	0
F2.33	Interval time 0of retracting volume diameter calculation	800	800
F2.34	Dead zone range of retracting volume diameter calculation	0.10	0.10
F2.35	Range 1of retracting volume diameter calculation 1	0.70	0.70
F2.36	Range 2 of retracting volume diameter calculation	1.20	1.20
F2.37	Range 3 of retracting volume diameter calculation	1.70	1.70
F2.38	Range 4 of retracting volume diameter calculation	2.20	2.20
F2.39	time of starting up smoothly	2000	2000
F2.40	Start up PID again control	1	1
F2.41	Start up PID smoothly selection	1	1
F2.42	Volume diameter reset control	0	0

F2.43	Wire disconnecting delay PID control	1	1
F2.44	Time of wire disconnecting delay	5000	5000
F3.00	Closed-loop run	0	1
F3.08	proportion gain KP	0.250	0.250
F3.09	KI Integral gain KI	0.010	0.010
F3.12	Deviation margin	$1.0(\%)$	1.0
F3.20	PID proportion gain 2	0.300	0.300
F3.21	PID Integral gain 2	0.000	0.000
F3.22	PID parameter self adjustment basis	1	1
F3.30	Failure relayTA,TB, TCfunction selection	15	15
F5.01	Input terminal X2 function selection	0	11
F5.02	Input terminal X3 function selection	0	12
F5.10	Closed-loop run	0	2
F5.15	proportion gain KP	2.60 Hz	3.00 Hz
F5.16	KI Integral gain KI	0.01 Hz	0.01 Hz
F7.03	Deviation margin	50.00	75.00

Appendix 2 The manual of EDS1300 middle frequency inverter 1 Symbol description

\times---- parameter can't be changed in process of running
○ ---- parameter can be changed in process of running

* ---- read-only parameter, unmodifiable

2 Function parameter schedule graph

F0-Basic run function parameter group					
Function code	Name	Set range	Min. unit	Factory default	Modifica -tion
F0.00	Frequency input channel selection	```0: keypad analog potentiometer setting keypad digital setting : terminal UP/DOWN adjust setting (stored after power off) serial port setting(not stored after power off) VCI analog setting (VCI-GND) CCI analog setting (CCI-GND) YCI analog setting (YCI-GND) terminal pulse (PULSE) setting combination setting 9: terminal UP/DOWN adjust setting (not stored after power off)```	1	1	\bigcirc
F0.01	Freq. digit setting	Lower limit Freq. \sim upper limit Freq.	0.1 Hz	1000.0 Hz	O
F0.02	Run command channel selection	0: keypad run control 1: terminal run command control (keypad stop command ineffective) 2: terminal run command control (keypad stop command effective) 3: serial port run command control (keypad stop command ineffective) 4: serial port run command control (keypad stop command effective)	1	0	\bigcirc
F0.03	Run direction setting	$\begin{array}{\|lc\|} \hline 1^{\text {st }} & \text { bit: } 0, \text { forward run; } 1, \text { reverse run } \\ 2^{\text {nd }} & \text { bit: } 0, \text { reverse run allowed } \\ & 1, \text { reverse run banned } \\ 3^{\text {rd }} & \text { bit: } R E V / J O G \text { key selection } \\ & 0: \text { as reverse run key } \\ & 1: \text { as jog key } \\ \hline \end{array}$	1	100	\bigcirc
F0.04	Acce/Dece mode selection	0 : linear accelerating decelerating mode 1 : S curve accelerating decelerating mode	1	0	\times
F0.05	S curve start section time	$\begin{array}{\|l\|} \hline 10.0(\%)-50.0(\%)(\text { Acce/Dece time }) \\ \text { F0.05 } \mathrm{F} 0.06 \leqslant 90(\%) \\ \hline \end{array}$	0.1(\%)	20.0(\%)	\bigcirc
F0.06	S curve risetime	$\begin{array}{\|l} \hline 10.0(\%)-70.0(\%)(\text { Acce/Dece time }) \\ \mathrm{F} 0.05+\mathrm{F} 0.06 \leqslant 90(\%) \\ \hline \end{array}$	0.1(\%)	60.0(\%)	\bigcirc
F0.07	Acce Dece time unit	0 : second 1: minute	1	0	\times
F0.08	Acce time 1	0.1-6000.0	0.1	90.0	\bigcirc
F0.09	Dece time 1	0.1-6000.0	0.1	90.0	\bigcirc
F0.10	Upper limit freq.	Lower limit freq. -2500 Hz	0.1 Hz	1000.0 Hz	\times
F0.11	Lower limit freq.	0.00-Upper limit freq.	0.01 Hz	0.00 Hz	\times
F0.12	Lower limit freq.	0: run at lower limit freq.	1	0	\times

	run mode	1: stop			
F0.13	Torque boost mode	0: manual boost 1: automatic boost	1	0	\bigcirc
F0.14	Torque boost	0.0-12.0 (\%)	0.1(\%)	00.5(\%)	\bigcirc
F0.15	V/F curve setting	0 : constant torque curve 1: degressive torque curve 1 (the 2.0 nd power) 2: degressive torque curve 2 (the 1.7th power) 3: degressive torque curve 3 (the 1.2th power) 4: End-user sets VF curve himself(determined by F2.37~F2.44) F2.37 VF Freq. value 0 F2.38 VF voltage value 0 F2.39 VF Freq. value 1 F2.40 VF voltage value 1 F2.41 VF Freq. value 2 F2.42 VF voltage value 2 F2.43 VF Freq. value 3 F2.44 VF voltage value 3 Remark: VF frequency and voltage can't be 0 or maximum	1	0	\times
F0.16	G/P type setting	$\begin{aligned} & \text { 0: G type } \\ & \text { 1: P type } \end{aligned}$	1	0	\times

F1—Start, stop, brake function parameter group							
Function code	Name	Set range	Min. unit	Factory default	Modifi -cation		
F1.00	Start-up run mode	0: start at start-up freq. 1: first brake, then start at start-up freq. 2: reserved	1	0	\times		
F1.01	start-up freq.	$0.0-100.0 \mathrm{~Hz}$	0.1 Hz	0.0 Hz	\bigcirc		
F1.02	start-up freq. duration	$0.0-20.0 \mathrm{~S}$	0.1 s	0.0 s	\bigcirc		
F1.03	DC brake volt. at start-up	$0-15(\%)$	1	0	\bigcirc		
F1.04	DC brake time at start-up	$0.0-20.0 \mathrm{~S}$	0.1 s	0.0 s	\bigcirc		
F1.05	Stop mode	$0:$ Dec stop $1:$ free stop 2: Dec + DC brake stop	0.1 Hz	0.0 Hz	\bigcirc		
F1.06	DC brake initiative freq. when stop running	$0.0-15.00 \mathrm{~Hz}$	0.1 s	0.0 s	\bigcirc		
F1.07	DC brake time when stop running	$0.0-20.0 \mathrm{~s}$	1	0	\bigcirc		
F1.08	DC brake voltage when stop running	$0-15(\%)$	0				

F2-Auxiliary run function parameter group					
Function code	Name	Set range	Min. unit	Factory default	Modificat -ion
F2.00	Analog filter time constant	0.00-30.00s	0.01 s	0.20s	\bigcirc
F2.01	Forward reverse run dead-section time	0.0-3600.0s	0.1s	0.1s	\bigcirc
F2.02	Automatic energy save run	$0 \text { : no action }$ 1: action	1	0	\times
F2.03	AVR function	0: no action 1: action all the time 2: no action only during Dec	1	0	\times
F2.04	Slip frequency compensation	$\begin{aligned} & \hline 0 \sim 150(\%) 0 \text {-no slip frequency } \\ & \text { compensation } \\ & \hline \end{aligned}$	1	0	\times
F2.05	Carrier wave freq.	$2-15.0 \mathrm{~K}$	0.1K	depend on machine type	\times
F2.06	Jog run frequency	$1.0-1000.0 \mathrm{~Hz}$	0.1 Hz	50.0 Hz	\bigcirc
F2.07	Jog Acc time	0.1-60.0s	0.1s	20.0s	\bigcirc
F2.08	Jog Dec time	0.1-60.0s	0.1 s	20.0s	\bigcirc
F2.09	Frequency input channel combination	```0: \(\mathrm{VCI}+\mathrm{CCI}\) 1: \(\mathrm{VCI}-\mathrm{CCI}\) 2: \(\mathrm{YCI}+\mathrm{CCI}\) 3: RS485+YCI 4: \(\mathrm{VCI}+\mathrm{YCI}\) 5: reserved 6: exterior pulse provision + CCI 7: exterior pulse provision- CCI 8: reserved 9: reserved 10: reserved 11: reserved 12: reserved 13: VCI, CCI any nonzero value effective, VCI preferred 14: reserved 15: RS485+CCI 16: RS485-CCI 17: RS485+VCI 18: RS485-VCI 19: RS485+keypad potentiometer 20: RS485- keypad potentiometer 21: VCI + keypad potentiometer 22: VCI- keypad potentiometer 23: CCI + keypad potentiometer 24: CCI- keypad potentiometer 25: reserved 26: reserved 27: reserved 28: reserved```	1	0	\times

F2.10	Principal subordinate machine communication frequency provision proportion	$0(\%)-500(\%)$	1(\%)	100(\%)	O
F2.11	LED display control 1	```0000-1111 first bit: running time 0 : not display 1: display second bit: accumulative time 0 : not display 1: display third bit: input terminal status 0 : not display 1: display kilobit(fourth bit): output terminal status 0 : not display 1: display```	1	0000	O
F2.12	LED display control 2	```0000-1111 first bit: analog input VCI 0 : not display 1: display second bit: analog input YCI 0 : not display 1: display third bit: analog input CCI 0 : not display 1: display kilobit(fourth bit): exterior pulse input 0 : not display 1: display```	1	1111	O
F2.13	Parameter operation control	LED $1^{\text {st }}$ bit: 0 : all parameter allowed to be modified 1: except this parameter, all other parameter not allowed to be modified 2: except F0.01 and this parameter, all other parameter not allowed to be modified LED $2^{\text {nd }}$ bit: 0 : no action 1: restore default value 2: clear history failure record LED $3^{\text {rd }}$ bit: 0 : lock all buttons 1: lock all buttons but not STOP key 2: lock all buttons but not STOP key 3: lock all buttons but not RUN, STOP key 4: lock all buttons but not SHIFT, STOP key	1	0	\times

F2.14	Communication configuration	LED first bit: baud rate selection 0: 1200BPS 1: 2400BPS 2: 4800BPS 3: 9600BPS 4: 19200BPS 5: 38400BPS LED second bit: data format 0: 1-8-1 format, no checkout 1: 1-8-1 format, even checkout 2: 1-8-1 format, odd checkout	1	03	\times
F2.15	Local address	$0-127,127$ is broadcast address. The inverter only receive but not send when it is set to be 127,0 is address for main device.	1	1	\times
F2.16	Communication overtime	0.0-1000.0s	0.1s	0.0s	\times
F2.17	Local response delay	$0-1000 \mathrm{~ms}$	1 ms	5 ms	\times
F2.18	Acce time 2	0.1-6000.0	0.1	20.0	\bigcirc
F2.19	Dece time 2	0.1-6000.0	0.1	20.0	\bigcirc
F2.20	Acce time 3	0.1-6000.0	0.1	20.0	\bigcirc
F2.21	Dece time 3	0.1-6000.0	0.1	20.0	\bigcirc
F2.22	Acce time 4	0.1-6000.0	0.1	20.0	\bigcirc
F2.23	Dece time 4	0.1-6000.0	0.1	20.0	\bigcirc
F2.24	Acce time 5	0.1-6000.0	0.1	20.0	\bigcirc
F2.25	Dece time 5	0.1-6000.0	0.1	20.0	\bigcirc
F2.26	Acce time 6	0.1-6000.0	0.1	20.0	\bigcirc
F2.27	Dece time 6	0.1-6000.0	0.1	20.0	\bigcirc
F2.28	Acce time 7	0.1-6000.0	0.1	20.0	\bigcirc
F2.29	Dece time 7	0.1-6000.0	0.1	20.0	\bigcirc
F2.30	Multisection freq. 1	Lower limit freq.-upper limit freq.	0.1 Hz	100.0 Hz	O
F2.31	Multisection freq. 2	Lower limit freq.-upper limit freq.	0.1 Hz	200.0 Hz	O
F2.32	Multisection freq. 3	Lower limit freq.-upper limit freq.	0.1 Hz	300.0 Hz	O
F2.33	Multisection freq. 4	Lower limit freq.-upper limit freq.	0.1 Hz	400.0 Hz	O
F2.34	Multisection freq. 5	Lower limit freq.-upper limit freq.	0.1 Hz	500.0 Hz	O
F2.35	Multisection freq. 6	Lower limit freq.-upper limit freq.	0.1 Hz	600.0 Hz	O
F2.36	Multisection freq. 7	Lower limit freq.-upper limit freq.	0.1 Hz	700.0 Hz	O
F2.37	VF frequency value 0	0.00-F2.39	0.01 Hz	10.00 Hz	\bigcirc
F2.38	VF voltage value 0	0.00-F2.40	0.01\%	20.00\%	\bigcirc
F2.39	VF frequency value 1	F2.37-F2.41	0.01 Hz	20.00 Hz	\bigcirc
F2.40	VF voltage value 1	F2.38-F2.42	0.01\%	40.00\%	\bigcirc
F2.41	VF frequency value 2	F2.39-F2.43	0.01 Hz	25.00 Hz	\bigcirc
F2.42	VF voltage value 2	F2.40-F2.44	0.01\%	50.00\%	\bigcirc
F2.43	VF frequency value 3	F2.41-high limit frquency	0.01 Hz	40.00 Hz	\bigcirc
F2.44	VF voltage value 3	F2.42-100.0\% (rated voltage)	0.01\%	80.00\%	\bigcirc

F2.45	Jumping freq. 1	$0.00-400.00 \mathrm{~Hz}$	0.1 Hz	0.00 Hz	\times
F2.46	Jumping freq. 1 range	$0.00-30.00 \mathrm{~Hz}$	0.1 Hz	0.00 Hz	\times
F2.47	Jumping freq. 2	$0.00-400.00 \mathrm{~Hz}$	0.1 Hz	0.00 Hz	\times
F2.48	Jumping freq. 2 range	$0.00-30.00 \mathrm{~Hz}$	0.1 Hz	0.00 Hz	\times
F2.49	Jumping freq. 3	$0.00-400.00 \mathrm{~Hz}$	0.1 Hz	0.00 Hz	\times
F2.50	Jumping freq. 3 range	$0.00-30.00 \mathrm{~Hz}$	0.1 Hz	0.00 Hz	\times
F2.51	Setting run time	0-65535 hours	1	0	\bigcirc
F2.52	Accumulative run time	0-65535 hours	1	0	*
F2.53	RS485/232 communication frame format selection	0 : a ASCII frame of 14 byte or 18 byte 1: a hex frame of 8 byte or 10 byte, original response not changed 2: a hex frame of 8 byte or 10 byte, 12 command has no response 3: a hex frame of 8 byte or 10 byte, 14 command has no response 4: a hex frame of 8 byte or 10 byte, both 12 and 14 command have no response	1	0	\times

F3-Closed-loop run function parameter group					
$\begin{array}{\|c\|} \hline \text { Function } \\ \text { code } \end{array}$	Name	Set range	Min. unit	Factory default	Modifi -cation
F3.00	Closed-loop run control selection	0: closed-loop control ineffective 1: PID closed-loop control effective 2: reserved	1	0	\times
F3.01	Provision channel selection	0: digital provision 1: VCI analog $0-10 \mathrm{~V}$ voltage provision 2: CCI analog provision 3: keypad potentiometer provision	1	1	\bigcirc
F3.02	Feedback channel selection	```0 : VCI analog input voltage \(0-10 \mathrm{~V}\) 1: CCI analog input 2: \(\mathrm{VCI}+\mathrm{CCI}\) 3: VCI-CCI 4: \(\operatorname{Min}\{\mathrm{VCI}, \mathrm{CCI}\}\) 5: Max \{ VCI, CCI \} 6: pulse feedback```	1	1	\bigcirc
F3.03	Specified value digital setting	$0.00 \sim 10.00 \mathrm{~V}(\operatorname{setF} 3.00=1, \mathrm{~F} 3.21=9.999)$	0.01	0.00	\bigcirc
F3.04	Minimum specified value	0.0-maximum specified value; percentage relative to 10.00 V	0.1(\%)	(0.0)\%	\bigcirc
F3.05	feedback value responding to minimum specified value	0.0-100.0(\%)	0.1(\%)	(0.0)\%	\bigcirc
F3.06	maximum specified value	Minimum specified value $-100.0(\%)$	0.1(\%)	100.0(\%)	\bigcirc
F3.07	feedback value responding to maximum specified value	0.0-100.0(\%)	0.1(\%)	100.0(\%)	\bigcirc

F3.08	proportion gain Kp	0.000-9.999	0.001	0.050	\bigcirc
F3.09	Integral gain Ki	0.000-9.999	0.001	0.050	\bigcirc
F3.10	Differential gain Kd	0.000-9.999	0.001	0.000	\bigcirc
F3.11	Sampling cycle T	0.01-1.00s	0.01 s	0.10s	\bigcirc
F3.12	Deviation margin	$0.0-20.0(\%)$ percentage relative to 10.00 V	0.1(\%)	2.0(\%)	\bigcirc
F3.13	Integral separation PID adjusting threshold	0.0-100.0\%	0.1\%	100.0\%	\bigcirc
F3.14	Closed-lop preset frequency	0-upper limit frequency	0.01 Hz	000.0hz	\bigcirc
F3.15	Closed-loop preset frequency holding time	0.0-6000s	0.1s	000.0s	\bigcirc
F3.16	reserved				
F3.17	reserved				
F3.18	reserved				
F3.19	reserved				
F3.20	reserved				
F3.21	reserved				
F3.22	reserved				
F3.23	reserved				
F3.24	reserved				
F3.25	reserved				
F3.26	reserved				
F3.27	Closed-loop adjusting characteristic	0: Forward function 1: Reverse function		0	\bigcirc
F3.28	LED initial supervision parameter selection	0 : set frequency 1: output frequency : output current 3: output voltage 4: DC bus bar voltage : motor speed 6: heat sink temperature : run time : accumulative run time 9: input terminal status 10: output terminal status 1: analog input VCI/PID provision 12: analog input CCI/PID feedback 13: analog input YCI 14: exterior pulse inputs		1	\bigcirc
F3.29	YCI run-in delay time	0.0-999.9s	0.1	10.0	\bigcirc
F3.30	Failure relay TA, TB, TC function selection	0 : inverter running(RUN) : frequency arriving signal(FAR) : frequency level detect signal (FDT1) 3: reserved 4: overload warning alarm signal (OL) 5: output frequency reach high limit(FHL) 6: output frequency reach low limit(FLL) : inverter under voltage blockage stop (LU) : external failure stop-running(EXT) 9: inverter zero speed running 10: PLC running 11: simple PLC section running finished 12: PLC finish a cycle running 13: reserved		15	\bigcirc

		14: inverter ready to run (RDY) 15: inverter failure 16: traverse high and low limit restriction 17: interior counter reach final value 18: interior counter reach specified value 19: set run time arriving 20: interior timing arriving 21: reserved 22: reserved 23: reserved 24: reserved			
F3.31	VCLanalog input gain	$0-800 \%$		100	0

F4-Simple PLC function parameter group					
Function code	Name	Set range	Min. unit	factory default	Modifi -cation
F4.00	Simple PLC running setting	LED first bit: 0 : no action 1: stop after single circulation 2: keep final value after single circulation 3: consecutive circulation LED second bit: 0 : start again from first section 1: continue to run at mid-section frequency LED third bit: PLC run time unit 0 : second 1: minute	1	000	\times
F4.01	Section 1 setting	000-621 LED first bit: frequency setting 0 : multisection freq. $\mathrm{i}(\mathrm{i}=1 \sim 7)$ 1: freq. determined by F0.00 function code LED second bit: run direction selection 0 : forward run 1: reverse run 2: determined by run command LED third bit: Acc/Dec time selection 0: Acc/Dec time 1 1: Acc/Dec time 2 2: Acc/Dec time 3 3: Acc/Dec time 4 4: Acc/Dec time 5 5: Acc/Dec time 6 6: Acc/Dec time 7	1	000	\bigcirc
F4.02	Section 1 run time	0-6000.0	0.1	10.0	\bigcirc
F4.03	Section 2 setting	000-621	1	000	\bigcirc
F4.04	Section 2 run time	0-6000.0	0.1	10.0	\bigcirc
F4.05	Section 3 setting	000-621	1	000	\bigcirc
F4.06	Section 3 run time	0-6000.0	0.1	10.0	\bigcirc
F4.07	Section 4 setting	000-621	1	000	\bigcirc
F4.08	Section 4 run time	0-6000.0	0.1	10.0	\bigcirc
F4.09	Section 5 setting	000-621	1	000	\bigcirc
F4.10	Section 5 run time	0-6000.0	0.1	10.0	\bigcirc
F4.11	Section 6 setting	000-621	1	000	\bigcirc

F4.12	Section 6 run time	$0-6000.0$	0.1	10.0	\bigcirc
F4.13	Section 7 setting	$000-621$	1	000	\bigcirc
F4.14	Section 7 run time	$0-6000.0$	0.1	10.0	\bigcirc

F5-Terminal correlative function parameter group					
Function code	Name	Set range	Min. unit	Factory default	Modif -ication
F5.00	Input terminal X1 function selection	0: leave control terminal unused multisection speed control terminal 1 multisection speed control terminal 2 multisection speed control terminal 3 multisection speed control terminal 4 external forward run jog control external reverse run jog control Acc/Dec time option terminal 1 Acc/Dec time option terminal 2 9: Acc/Dec time option terminal 3 10: external device failure input external reset input 12: free stop input external stop-running order stop DC braking input command DB 15: inverter run banned frequency increasing control (UP) frequency degression control (DOWN) Acc/Dec ban command three-line run control closed-loop ineffective PLC ineffective simple PLC pause control PLC stop status reset frequency provision channel option 1 frequency provision channel option 2 frequency provision channel option 3 frequency switched to CCI command switched to terminal run command channel option 1 run command channel option 2 run command channel option 3 swing frequency jump-in external interruption input interior counter reset end interior counter triggering end interior timer reset end 37: interior timer triggering end 38: pulse frequency input(only effective for X7,X8) 39: reserved 40: reserved 41: reserved 42: reserved	1	0	\times
F5.01	Input terminal X2 function selection	Same as above			\times
F5.02	Input terminal X3 function selection	Same as above			\times

F5.03	Input terminal X4 function selection	Same as above			\times
F5.04	Input terminal X5 function selection	Same as above			\times
F5.05	Input terminal X6 function selection	Same as above			\times
F5.06	Input terminal X7 function selection	Same as above			\times
F5.07	Input terminal X8 function selection	Same as above			\times
F5.08	FWD/REV run mode selection	0 : double-line control mode 1 1: double-line control mode 2 2: three-line control mode 1 3: three-line control mode 2	1	0	\times
F5.09	UP/DOWN velocity	$0.01-99.99 \mathrm{~Hz} / \mathrm{s}$	$0.01 \mathrm{~Hz} / \mathrm{s}$	$1.00 \mathrm{~Hz} / \mathrm{s}$	0
F5.10	Open circuit collector output terminal OC1 output setting	0: inverter running(RUN) 1: frequency arriving signal(FAR) 2: frequency level detect signal (FDT1) 3: reserved 4: overload warning alarm signal (OL) 5: output frequency reach high limit(FHL) 6: output frequency reach low limit(FLL) 7: inverter under voltage blockage stop (LU) 8: external failure stop-runnin(EXT) 9: inverter zero rotate speed running 10: PLC running 1: simple PLC section running finished 2: PLC finish a cycle running 3: reserved 4: inverter ready to run (RDY) 5: inverter failure 6: swing frequency high and low limit restriction 7: interior counter reach final value 8: interior counter reach specified value 9: set run time arriving 20: interior timing arriving 21: OC1-variable frequency for the $1^{\text {st }}$ pump OC2-power source for the $1^{\text {st }}$ pump OC3- variable frequency for the $2^{\text {nd }}$ pump OC4-power source for the $2^{\text {nd }}$ pump 22: reserved 23: reserved 24: reserved	1	0	\times
F5.11	Open circuit collector output terminal OC2 output setting	Same as above	1	0	\times
F5.12	Open circuit collector output terminal OC3 output setting	Same as above	1	0	\times
F5.13	Open circuit collector output terminal OC4 output setting	Same as above	1	0	\times

F5.14	Frequency arriving (FAR) checkout scope	$0.00-50.00 \mathrm{~Hz}$	0.01 Hz	5.00 Hz	\bigcirc
F5.15	FDT1 (frequency level) electric level	0.00-high limit frequency	0.01 Hz	10.00 Hz	\bigcirc
F5.16	FDT1 lag	$0.00-50.00 \mathrm{~Hz}$	0.01 Hz	1.00 Hz	\bigcirc
F5.17	Analog output (AO1) selection	```0 : output frequency(0 -high limit frequency) set frequency \((0-\) high limit frequency \()\) output current \((0-2 \times\) rated current \()\) output voltage \((0-1.2 \times\) load motor rated voltage \()\) bus-bar voltage \((0-800 \mathrm{~V})\) PID provision (\(0.00-10.00 \mathrm{~V}\)) PID feedback (\(0.00-10.00 \mathrm{~V}\)) reserved 8: reserved 9: reserved```	1	0	\bigcirc
F5.18	Analog output (AO1) gain	0.00-2.00	0.01	1.00	\bigcirc
F5.19	Analog output (AO1) offset	0.00-10.00V	0.01	0.00	\bigcirc
F5.20	Analog output (AO2) selection	Same as F5.17	1	0	\bigcirc
F5.21	Analog output (AO2) gain	0.10-2.00	0.01	1.00	\bigcirc
F5.22	Analog output (AO2) offset	$0.00-10.00 \mathrm{~V}$	0.01	0.00	\bigcirc
F5.23	DO terminal output function selection	Same as F5.17	1	0	\bigcirc
F5.24	DO maximum pulse output frequency	$0.1-20.0(\max .20 \mathrm{KHz})$ Max. DO port output pulse frequency corresponds to Max. value selected by F5.23	0.1 KHz	10.0	\bigcirc
F5.25	Set interior counting value reaches provision	0-9999	1	0	\bigcirc
F5.26	Specified interior counting value reaches provision	0-9999	1	0	\bigcirc
F5.27	Interior setting\quad timer	0.1-6000.0s	0.1	60.0	\bigcirc

F6-Swing frequency special function parameter group					
Function code	Name	Set range	Min. unit	Factory default	Modifi -cation
F6.00	Reserved				
F6.01	Reserved				
F6.02	Reserved				
F6.03	Reserved				
F6.04	Reserved				
F6.05	Reserved				
F6.06	Reserved				
F6.07	Reserved				

F7-Frequency provision function parameter group					
Function code	Name	Set range	Min. unit	Factory default	Modifi -cation
F7.00	VCI min. provision	0.00-F7.02	0.01 V	0.00 V	\bigcirc
F7.01	VCI min. provision corresponding freq.	0.00-high limit frequency	0.01 Hz	000.0 Hz	\bigcirc
F7.02	VCI max. provision	$0.00-10.00 \mathrm{~V}$	0.01 V	9.99 V	\bigcirc
F7.03	VCI max. provision corresponding freq.	0.00-high limit frequency	0.01 Hz	1000 Hz	\bigcirc
F7.04	CCI min. provision	0.00-F7.06	0.01 V	0.00 V	\bigcirc
F7.05	CCI min. provision corresponding freq.	0.00-high limit frequency	0.01 Hz	000.0 Hz	\bigcirc
F7.06	CCI max. provision	$0.00-10.00 \mathrm{~V}$	0.01 V	9.99 V	\bigcirc
F7.07	CCI max. provision corresponding freq.	0.00-high limit frequency	0.01 Hz	1000 Hz	\bigcirc
F7.08	YCI min. provision	0.00-F7.10	0.01 V	00.03 V	\bigcirc
F7.09	YCI min. provision corresponding freq.	$0.00-$ high limit frequency (reverse run)	0.01 Hz	500.0 Hz	\bigcirc
F7.10	YCI max. provision	$0.00-10.00 \mathrm{~V}$	0.01 V	9.99 V	\bigcirc
F7.11	YCI max. provision corresponding freq.	$0.00-$ high limit frequency (forward run)	0.01 Hz	1000 Hz	\bigcirc
F7.12	YCI dead area setting	$0.00 \mathrm{~V}-2.00 \mathrm{~V}$	0.01 V	0.10 V	\bigcirc
F7.13	PULSE max. input pulse	0.01-20.0K	0.01 K	10.0K	\bigcirc
F7.14	PULSE min. provision	$\begin{aligned} & \text { 0.0-F7.16(PULSE max. } \\ & \text { provision) } \end{aligned}$	0.01 K	0.0K	\bigcirc
F7.15	PULSE min. provision corresponding freq.	0.00-high limit frequency	0.01 Hz	000.0Hz	\bigcirc
F7.16	PULSE max. provision	$\begin{array}{\|c} \hline \text { F7.14 (PULSE min. } \\ \text { provision) - F7.13 } \\ (\text { max. input pulse) } \\ \hline \end{array}$	0.1 K	10.0K	\bigcirc
F7.17	PULSE max. provision corresponding freq.	0.00-high limit frequency	0.01 Hz	1000 Hz	\bigcirc

F8-Motor and vector control parameter group

Function code	Name	Set range	Unit	Factory default	Modifi -cation
F8.00	Control mode setting	$0:$ V/F control 1: vector control remark: for EDS1300 it can't be 1	1	0	\times
F8.01	Motor rated voltage	$1-480 \mathrm{~V}$	1 V	Depend on device type	\times
F8.02	Motor rated current	$0.1-999.9 \mathrm{~A}$	0.1 A	Depend on device type	\times
F8.03	Motor rated frequency	$10.0-1000.0 \mathrm{~Hz}$	0.01 Hz	Depend on device type	\times
F8.04	Motor rated speed	$1-9999 \mathrm{r} / \mathrm{min}$	$1 \mathrm{r} /$ min	Depend on device type	\times
F8.05	Motor pole	$2-14$	Depend on device type	\times	
F8.06	Motor rated power	$0.1-999.9 \mathrm{KW}$	0.1	Depend on device type	\times
F8.07	Reserved				
F8.08	Reserved				

F8.09	Reserved				
F8.10	Reserved				
F8.11	Reserved				
F8.12	Reserved				
F8.13	Reserved				
F8.14	Reserved				
F8.15	Reserved				
F8.16	Reserved				
F8.17	Reserved				

F9-Protection correlative function parameter group					
Function code	Name	Set range	Min. unit	Factory default	Modific -ation
F9.00	Instantaneous power off restarting latency time	$0.0-10.0 \mathrm{~S}$ 0 indicates ineffective power off restarting	0.1S	0.0S	\times
F9.01	Failure self-renew times	$\begin{array}{\|l\|} \hline 0-10 \\ 0 \text { shows no automatic reset function } \\ \hline \end{array}$	1	0	\times
F9.02	Failure self-renew interval	0.5-20.0S	0.1S	5.0S	\times
F9.03	Motor overload protection mode selection	0 : no action 1: inverter close off output	1	1	\times
F9.04	Motor overload protection coefficient	20.0-120.0(\%)	0.1(\%)	100.0(\%)	\times
F9.05	Overload warning alarm checkout level	20-200(\%)	1(\%)	130(\%)	\bigcirc
F9.06	Overload warning alarmDelay time	0.0-20.0s	0.1s	5.0s	\bigcirc
F9.07	Overvoltage stall selection	$\begin{aligned} & \hline 0: \text { ban } \\ & 1: \text { allow } \end{aligned}$	1	1	\times
F9.08	Overvoltage stall point	120-150(\%)	1(\%)	120(\%)	\bigcirc
F9.09	Automatic current limit level	110-200(\%)	1(\%)	140(\%)	\times
F9.10	Frequency declining rate during current limiting	$0.00-99.99 \mathrm{~Hz} / \mathrm{s}$	$0.01 \mathrm{~Hz} / \mathrm{s}$	$10.00 \mathrm{~Hz} / \mathrm{s}$	\bigcirc
F9.11	Automatic current limiting action selection	0 : constant speed ineffective 1: constant speed effective remark: Acc/Dec always effective	1	0	\times

Fd—Failure record function parameter group					
Function code	Name	Setting range	Min. unit	Factory default	Modifi -cation
Fd.00	Previous one time failure record	Previous one time failure record	1	0	$*$
Fd.01	Previous two time failure record	Previous two time failure record	1	0	$*$
Fd.02	Previous three time failure record	Previous three time failure record	1	0	$*$
Fd.03	Previous four time failure record	Previous four time failure record	1	0	$*$
Fd.04	Previous five time failure record	Previous five time failure record	1	0	$*$
Fd.05	Previous six time failure record	Previous six time failure record	1	0	$*$

Fd. 06	Set freq. of previous failure	Set freq. of previous failure	0.01 Hz	0	$*$
Fd. 07	output freq. of previous failure	output freq. of previous failure	0.01 Hz	0	$*$
Fd. 08	output current of previous failure	output current of previous failure	0.1 A	0	$*$
Fd. 09	output voltage of previous failure	output voltage of previous failure	1 V	0	$*$
Fd. 10	DC bus-bar voltage of previous failure	DC bus-bar voltage of previous failure	1 V	0	$*$
Fd. 11	Load motor speed of previous failure	Load motor speed of previous failure	$1(\mathrm{r} / \mathrm{m})$	0	$*$
Fd. 12	Module temperature of previous failure	Module temperature of previous failure	$1^{\circ} \mathrm{C}$	0	$*$
Fd. 13	Input terminal status of previous failure	Input terminal status of previous failure		11111111	$*$
Fd. 14	Accumulative run time of previous failure	Accumulative run time of previous failure		0	$*$

FF—Password and manufacturer function parameter group					
Function code	Name	Setting range	Min. unit	factory default	Modific -ation
FF.00	User password	$0000-9999$	1	0000	\times
FF.01	Manufacturer password	$0000-9999$	1	0000	\times
FF.02- FF.0X	Manufacturer's special parameter				

C—Supervision function parameter group					
Function code	Name	Description	Min. unit	Factory default	Modific -ation
C-00	Set frequency	Current set frequency	0.01 HZ		
C-01	Output freq.	Current output freq.	0.01 HZ		$*$
C-02	Output current	Virtual value of current output current	0.1 A		$*$
C-03	Output voltage	Virtual value of current output voltage	1 V		$*$
C-04	DC bus-bar voltage	Current DC bus-bar voltage	1 V		$*$
C-05	Load motor speed	Product of output frequency and load motor speed emendation factor	$1(\mathrm{r} / \mathrm{m})$		$*$
C-06	Module temperature	IGBT heat sink temperature	$1{ }^{\circ} \mathrm{C}$		$*$
C-07	Run time	Inverter electrification run time	1 h		$*$
C-08	Accumulative run time	Inverter accumulative run time	1 h		$*$
C-09	Input terminal status	Switch value input terminal status	--		$*$
C-10	Output terminal status	Switch value output terminal status	--		$*$
C-11	Analog input VCI	Analog input value of VCI	V		$*$
C-12	Analog input YCI	Analog input value of YCI	V		$*$
C-13	Analog input CCI	Analog input value of CCI	V		$*$
C-14	Exterior pulse input	Exterior pulse input	0.1 KHz		$*$

Appendix 3 Modbus communication protocol (need customized special process)

1.1 Summarization

We provide general RS485 communication interface in our inverters (such as EDS800 series, EDS1000 series and etc.) for the user. Through this communication interface upper device (such as HMI, PC, PLC controller and etc.) can perform centralized monitor to the inverter (such as to set inverter parameter, control run of inverter, read work state of the inverter).

This communication protocol is interface criterion file designed for realizing above-mentioned function, please read it earnestly and program according to it so that realize long-distance and network control to the inverter.

1.2 Communication net buildup mode

Fig. 1 net buildup graph

1.3 Communication mode

At present, EDS1000 inverter can be used only as auxiliary device in RS485 net. Can realize communication between inverters through PC, PLC or HMI if it's needed. Specific communication mode is as mentioned below:
(1) PC or PLC as mainframe, inverter as auxiliary device, point-to-point communication between mainframe and auxiliary device.
(2) Auxiliary device don't response when mainframe send out command by broadcast address.
(3) User can set local address, baud rate and data format of the inverter through auxiliary device keypad or serial communication mode.
(4) EDS1000 provides optional RS485 interface.
(5) Default mode: Asynchronous serial, semiduplex transport mode. RTU mode.

Default format and transport rate: 8-N-1, 9600bps.
For specific parameter setting please see description for function code
F2.14~F2.17 as follows:
(remark: Below definition for F2.14~F2.17 is only effective under Modbus communication mode, and definition for other parameters are the same as original)

F2.14	Communication configuration	LED first bit: baud rate selection 0: 1200BPS 1: 2400BPS 2: 4800BPS 3: 9600BPS 4: 19200BPS 5: 38400BPS LED second bit: data format 0: 1-8-1 format, no checkout 1: 1-8-1 format, even checkout 2: 1-8-1 format, odd checkout LED third bit: response selection 0 : Respond to host command and reply to data packet 1: Respond to host command, but not reply	1	003	\times
F2.15	Local address	0-127, 0 is broadcast address	1	1	\times
F2.16	Communication timeout detection time	$0.0-1000.0 \mathrm{~s}, 0$ means communication timeout detection invalid	0.1s	0.0s	\times
F2.17	Local response delay	0-200ms	1 ms	5 ms	\times

1.4 RTU Communication Mode:

1.4.1 Data frame format

Using RTU mode, messages are sent at least 3.5 character time interval pause. The first transmitted field is device address, the character you can transfer is hexadecimal $0 \mathrm{x} 00 \sim 0 \mathrm{xFF}$. Network equipment Continuously monitor the bus, including pauses. When the address field is received, all equipment determine whether it is sent to their own. when the last character of the packet transfer is complete, at least a 3.5 character times pause mean the end of the message. A new message can begin after this pause.

The entire message frame must be transmitted as a continuous flow. If a new message start transmitting in less than 3.5 character times after a message and then receiving device will consider it a continuation of the previous message. This will cause an error, because in the final CRC field value can not be right.

RTU frame format as the talbe below:

Frame Header	3.5 characters time pause
Slave address	Slave value: 1~127
Communication command code	03H: read slave parameter 06 H : write slave parameter
Data content DATA	The contents of packet: Parameter address (16bit) ; Number of parameter or bytes of parameter value; Parameter value (16bit)
Data content DATA	
......	
......	
CRC check value low byte	16bit Unsigned check value
CRC check value high byte	
Closing Flag	3.5 characters time pause

Regarding generation method of CRC check value, please refer to this Appendix check way paragraph.

1.4.2 Host read slave parameter

Command code 03 H . Host can read or one or more parameter(up to ten) by initiating a communication transaction .
E.g., read 2 contiguous inverter parameter values from the address 0000 H of inverter whoes address is 01 , the contents of host command :

ADR	01 H
CMD	03 H
Parameters initial address high byte	00 H
Parameters initial address low byte	00 H
Number of parameter high byte	00 H
Number of parameter low byte	02 H
CRC check value low byte	Be calculated
CRC check value high byte	Be calculated

The contents of slave reply:

ADR	01 H
CMD	03 H
Parameter value bytes	04 H
Address 0000 H content high byte	00 H
Address 0000 H content low byte	01 H
Address 0001 H content high byte	13 H
Address 0001 H content low byte	88 H
CRC check value low byte	Be calculated
CRC check value high byte	Be calculated

1.4.3 Host write slave parameter

Command code 06 H . Host can write an parameter by initiating a communication transaction .
E.g.,The decimal system $5000(1388 \mathrm{H})$ written to the inverter 0001 H address whose slave address is 02 , host command including:

ADR	02 H
CMD	06 H
Parameter address high byte	00 H
Parameter address low byte	01 H
Parameter value high byte	13 H
Parameter value low byte	88 H
CRC check value low byte	Be calculated
CRC check value high byte	Be calculated

The contents of slave reply:

ADR	02 H
CMD	06 H
Parameter address high byte	00 H
Parameter address low byte	01 H
Address 0903H content high byte	13 H
Address 0903H content low byte	88 H
CRC check value low byte	Be calculated
CRC check value high byte	Be calculated

1.5 Data communication address allocation

1.5.1 Function code Fd-F0 group communication address

Inverter function parameter's MODBUS communication address addressing process follows PPnn way: PP means high byte of the address, corresponding to function parameter's group number; nn means low byte of the address, corresponding to function code parameter's group internal code. For example: F3.21 function code's communication address is $0315 \mathrm{H}, 03 \mathrm{H}$ is the hex form of group number $3,15 \mathrm{H}$ is the hex form of grop internal code 21.

F0.00~F9.11 communication address is $0000 \mathrm{H} \sim 090 \mathrm{BH}$, Fd group fault record parameter start address is 0 D 00 H .

1.5.2 control command and status word communication address

Variable Name	Communication address	Reading-writing attribute	Command data or response value meaning
run command word	2000 H	Writing only	1: inching run
			2: inching stop
			3: forward inching run
			4: reversal inching run
			5: run
			6: stop
			7: forward run
			8: reversal run
			9: fault reset
			10: emergency stop

Serial port frequency provision	2001 H	Reading and writing	Lower frequency~upper frequency
Inverter status	2100 H	Reading only	1: forwarder running 2: reversal running 3: stop 4: alarm status
Alarm code	2180 H	Reading only	0: without alarm 1~23:mean E001~E023 alarm

1.5.3 Monitor parameter communication address

Monitor parameter	Name	Communication address (read)
C-00	Set frequency	1000 H
C-01	Output frequency	1001 H
C-02	Output current	1002 H
C-03	Output voltage	1003 H
C-04	DC bus-bar vlotage	1004 H
C-05	Load motor speed	1005 H
C-06	module temperature.	1006 H
C-07	Power on running time	1007 H
C-08	Accumulative running time	1008 H
C-09	Input terminal status	1009 H
C-10	Output terminal status	100 AH
C-11	Analog input VCI value	100 BH
C-12	Analog input CCI value	100 CH
C-13	Analog input YCI value	100 DH
C-14	External impulse frequency	100 EH

1.6 Communication error processing

Inverter receiving data packet detection error, it finds reading\&writing parameter address or parameter value invalid, so reply to the host with communication error response packet. Communication error response packet (host command code +80 H) as command code, with 1 byte error code.

Format for communication error response packet as follows:

ADR	01 H
CMD	$83 \mathrm{H} / 86 \mathrm{H}$
Communication error code	$01 \mathrm{H} \sim 06 \mathrm{H}$ (for details, please check below table)
Low byte of CRC checksum	Obtain by calculating
High byte of CRC checksum	Obtain by calculating

Meaning for each communication error code value as follows:

Communication error code value	Type of communication error
$0 x 01$	CRC checksum error
$0 x 02$	Command code illegal
$0 x 03$	Register address visited illegal
$0 x 04$	Value to register illegal
$0 x 05$	Not allow to modify parameters
$0 x 06$	Register number read illegal

1.7 Data frames examples

1.7.1 Start 1\# inverter running

		$\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & \text { O} \\ & \text { O} \\ & \stackrel{\circ}{0} \end{aligned}$					릉 品	$\begin{aligned} & 50 \\ & 0.0 \\ & \text { gr } \end{aligned}$
host command frames	01	06	20	00	00	05	42	09
Auxiliary respond frames	01	06	20	00	00	05	42	09

1.7.2 Stop 1\# inverter running

$\begin{aligned} & \text { ت} \\ & \text { \#2 } \\ & \frac{0}{0} \\ & \frac{0}{2} \end{aligned}$								
host command frames	01	06	20	00	00	06	02	08
Auxiliary respond frames	01	06	20	00	00	06	02	08

1.7.3 Set 1\# inverter given value to 50 Hz

		$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{0}{9} \\ & \stackrel{\circ}{\circ} \\ & 0 \end{aligned}$					등 品 윽	
$\begin{gathered} \text { host } \\ \text { command } \\ \text { frames } \end{gathered}$	01	06	20	01	13	88	DE	9C
Auxiliary respond frames	01	06	20	01	13	88	DE	9C

1.7.4 Read 1\# inverter running state

		$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{0}{9} \\ & \stackrel{0}{\circ} \\ & 0 \end{aligned}$						
$\begin{gathered} \text { host } \\ \text { command } \\ \text { frames } \end{gathered}$	01	03	21	00	00	01	8E	36
Auxiliary respond frames	01	03	(Respo byteco	d value nt) 20	00	00	B8	44

1.8 CRC checksum mode

CRC checksum value calculating function written by C language is as
follows:

```
unsigned int cal_crc_value (unsigned char *pval, unsigned char len)
{
unsigned int crc_value=0xFFFF;
unsigned int i;
while(len--)
{
        crc_value ^= *pval++;
        for(i=0; i<8; i++)
        {
            if(crc_value & 0x0001)
            {
                        crc_value >>= 1;
                                crc_value }\mp@subsup{}{}{\wedge}=0xA001
            }
            else
            {
                                crc_value >>= 1;
            }
        }
}
return(crc_value);
}
```


Appendix 4 Braking resistance

1.1 Braking resistance

The motor's electric potential energy will charge inverter's capacitance up reversely if speed of the motor decends too quickly or load of the motor wobbles too quickly while the inverter is running, which will increase the voltage upon power modules suddenly and is easy to make the inverter damaged. The inverter will control it according to load size and performance. You only need to connect external braking resistance to realize timely energy discharge when the braking function is needed. To connect external resistance is a kind of energy consumption braking mode, as all the energy is consumed by the braking resistance.

We can add built-in braking unit for EDS1000-2S0004~2S0037 with additional cost upon receival of your requirement; EDS1000-4T0007G~4T0150G have built-in braking unit, but no braking resistance.

When braking function needed, please connect external braking resistance according to below table.

Braking unit\&braking resistance configuration and External braking resistance configuration table

Type	Built-in braking unit	Built-in braking resistance	External braking resistance	Qty.	Power of external braking resistance
EDS1000-2S0004	Need to be customized	N / A	$\geqslant 150 \Omega$	1	200 W
EDS1000-2S0007	Need to be customized	N / A	$\geqslant 100 \Omega$	1	250 W
EDS1000-2S0015	Need to be customized	N / A	$\geqslant 70 \Omega$	1	400 W
EDS1000-2S0022	Need to be customized	N / A	$\geqslant 50 \Omega$	1	600 W
EDS1000-2S0037	Need to be customized	N / A	$\geqslant 30 \Omega$	1	1000 W
EDS1000-4T0007G	Yes	N / A	$\geqslant 300 \Omega$	1	200 W
EDS1000-4T0015G	Yes	N / A	$\geqslant 300 \Omega$	1	200 W
EDS1000-4T0022G	Yes	N / A	$\geqslant 300 \Omega$	1	200 W
EDS1000-4T0037G	Yes	N / A	$\geqslant 125 \Omega$	1	400 W
EDS1000-4T0055G	Yes	N / A	$\geqslant 80 \Omega$	1	650 W
EDS1000-4T0075G	Yes	N / A	$\geqslant 80 \Omega$	1	650 W
EDS1000-4T0110G	Yes	N / A	$\geqslant 50 \Omega$	1	1000 W
EDS1000-4T0150G	Yes	N/A	$\geqslant 40 \Omega$	1	1000 W

[^0]: If the $2^{\text {nd }}$ bit is set to " 1 ", this function is effective for keypad run command channel, terminal run command channel and serial port run command channel.

